References

  1. M.S. Hasanin, S.A. Al Kiey, Environmentally benign corrosion inhibitors based on cellulose niacin nano-composite for corrosion of copper in sodium chloride solutions, Int. J. Biol. Macromol., 164 (2020) 3709–3717.
  2. T. Yan, S. Zhang, L. Feng, Y. Qiang, L. Lu, D. Fu, Y. Wen, J. Chen, W. Li, B. Tan, Investigation of imidazole derivatives as corrosion inhibitors of copper in sulfuric acid: combination of experimental and theoretical researches, J. Taiwan Inst. Chem. Eng., 106 (2020) 118–129.
  3. G. Vastag, E. Szocs, A. Shaban, E. Kalman, New inhibitors for copper corrosion, Pure Appl. Chem., 73 (2001) 1861–1869.
  4. L. Zhou, S. Zhang, B. Tan, L. Feng, B. Xiang, F. Chen, W. Li, B. Xiong, T. Song, Phenothiazine drugs as novel and ecofriendly corrosion inhibitors for copper in sulfuric acid solution, J. Taiwan Inst. Chem. Eng., 113 (2020) 253–263.
  5. N. Benzbiria, S. Echihi, M.E. Belghiti, A. Thoume, A. Elmakssoudi, A. Zarrouk, M. Zertoubi, M. Azzi, Novel synthetized benzodiazepine as efficient corrosion inhibitor for copper in 3.5% NaCl solution, Mater. Today:. Proc., 37 (2020) 3932–3939.
  6. R.K. Ahmed, S. Zhang, Bee pollen extract as an eco-friendly corrosion inhibitor for pure copper in hydrochloric acid, J. Mol. Liq., 316 (2020) 113849, doi: 10.1016/j.molliq.2020.113849.
  7. J. He, Q. Li, X. Li, J. An, G. Chen, L. Zhao, W. Li, Insight into the anti-corrosion mechanism of 2-aminobenzenethiol as the inhibitor for copper in acid environment, J. Mol. Liq., 320 (2020) 114494, doi:10.1016/j.molliq.2020.114494.
  8. X. Zhang, F. Wang, Y. He, Y. Du, Study of the inhibition mechanism of imidazoline amide on CO2 corrosion of Armco iron, Corros. Sci. 43 (2001) 1417–1431.
  9. M.B. Kermani, A. Morshed, Carbon dioxide corrosion in oil and gas production—a compendium, Corrosion, 59 (2003) 659–683.
  10. A. Asan, S. Soylu, T. Kıyak, F. Yıldırım, S.G. Oztas, N. Ancın, M. Kabasakaloglu, Investigation on some Schiff bases as corrosion inhibitors for mild steel, Corros. Sci., 48 (2006) 3933–3944.
  11. A.B. Shein, A.V. Denisova, Choice of effective corrosion inhibitors for acid treatment of wells, Prot. Met., 42 (2006) 34–37.
  12. A. Elhebshi, M.S. El-Deab, A. El Nemr, I. Ashour, Corrosion inhibition efficiency of cysteine-metal ions blends on low carbon steel in chloride-containing acidic media, Int. J. Electrochem. Sci., 14 (2019) 3897–3915.
  13. A. Elhebshi, A. El Nemr, M.S. El-Deab, I. Ashour, CBG-HCl as a green corrosion inhibitor for low carbon steel in 0.5 M H2SO4 with and without 0.1 M NaCl, Desal. Water Treat., 164 (2019) 240–248.
  14. M.A. Deyab, Effect of cationic surfactant and inorganic anions on the electrochemical behavior of carbon steel in formation water, Corros. Sci. 49 (2007) 2315–2328.
  15. A. El Nemr, A.A. Moneer, A. Khaled, A. El Sikaily, G.F. Elsayed, Modeling of synergistic halide additives effect on the corrosion of aluminum in basic solution containing dye, Mater. Chem. Phys., 144 (2014) 139–154.
  16. A. El Nemr, G.F. El Said, A. Khaled, A. El Sikaily, A.A. Moneer, D.E. Abd-El-Khalek, Differences in corrosion inhibition of water extract of Cassia fistula L. pods and o-phenanthroline on steel in acidic solutions in the presence and absence of chloride ions, Desal. Water Treat., 52 (2014b) 5187–5198.
  17. I. Ahamad, R. Prasad, M.A. Quraishi, Inhibition of mild steel corrosion in acid solution by Pheniramine drug: experimental and theoretical study, Corros. Sci., 52 (2010) 3033–3041.
  18. C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi, Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions: a review, J. Mol. Liq., 251 (2018) 100–118.
  19. C.M. Fernandes, T.D.S. Ferreira Fagundes, N. Escarpini dos Santos, T. Shewry de M. Rocha, R. Garrett, R.M. Borges, G. Muricy, A.L. Valverde, E.A. Ponzio, Ircinia strobilina crude extract as corrosion inhibitor for mild steel in acid medium, Electrochim. Acta, 312 (2019) 137–148.
  20. G. Ji, S. Anjum, S. Sundaram, R. Prakash, Musa paradisica peel extract as green corrosion inhibitor for mild steel in HCl solution, Corros. Sci., 90 (2015) 107–117.
  21. I. Rotaru, S. Varvara, L. Gaina, L.M. Muresan, Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions, Appl. Surf. Sci., 321 (2014) 188–196.
  22. H. Li, S. Zhang, B. Tan, Y. Qiang, W. Li, S. Chen, L. Guo, Investigation of losartan potassiumas an eco-friendly corrosion inhibitor for copper in 0.5 M H2SO4, J. Mol. Liq., 305 (2020) 112789, doi:10.1016/j.molliq.2020.112789.
  23. T. Ma, B. Tan, Y. Xu, D. Yin, G. Liu, N. Zeng, G. Song, Z. Kao, Y. Liu, Corrosion control of copper wiring by barrier CMP slurry containing azole inhibitor: combination of simulation and experiment, Colloids Surf., A, 599 (2020) 124872, doi: 10.1016/ j.colsurfa.2020.124872.
  24. H.S. Mandour, S.A. Abouel-Enein, R.M.M. Morsi, L.A. Khorshed, Azo ligand as new corrosion inhibitor for copper metal: spectral, thermal studies and electrical conductivity of its novel transition metal complexes, J. Mol. Struct., 1225 (2021) 129159, doi: 10.1016/j.molstruc.2020.129159.
  25. T. Zhao, A. Munis, M. Zheng, J. Hu, H. Teng, L. Wei, 2-(2-Pentadecyl-4, 5-dihydro-1H-imidazol-1-yl) ethanol as a sustainable inhibitor for copper corrosion in molten hydrated phase change materials, J. Mol. Liq., 316 (2020) 113927, doi: 10.1016/j.molliq.2020.113927.
  26. A. Jakab, M.L. Dan, N. Vaszilcsin, Corrosion behaviour of copper in sulphuric acid in the presence of
    N-methylaniline, Analele Universității din Oradea, Fascicula: Protecția Mediului, 25 (2015) 209–216.
  27. A.H. Tuthill, B. Todd, J. Oldfield, Experience with Copper Alloy Tubing, Waterboxes and Piping in MSF Desalination Plants, Proceedings of World Congress on Desalination and Water Re-use, International Desalination Association (IDA); Cencro de Estudios y Expertmerocion de Obras Pubiicas (CEDEX); Ministerio de Medio Ambiente; Ministerio de Formento; Madrid, Spain, 1997, pp. 251–270.
  28. I.B. Obot, A. Meroufel, I.B. Onyeachu, A. Alenazi, A.A. Sorour, Corrosion inhibitors for acid cleaning of desalination heat exchangers: progress, challenges and future perspectives, J. Mol. Liq., 296 (2019) 111760., doi:10.1016/j.molliq.2019.111760.
  29. T. Hodgkiess, K.H. Al-Omari, N. Bontems, B. Lesiak, Acid cleaning of thermal desalination plant: do we need to use corrosion inhibitors?, Desalination, 183 (2005) 209–216.
  30. G. Wypych, Methods of Solvent Detection and Testing, Handbook of Solvents, Vol. 2: Use, Health, and Environment, 2019.
  31. A. Jmiai, B. El Ibrahimi, A. Tara, R. Oukhrib, S.J. El Issami, O. Bara, Chitosan as an eco-friendly inhibitor for copper corrosion in acidic medium: protocol and characterization, Cellulose, 24 (2017) 3843–3867.
  32. E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion inhibitors Part II: quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives, Electrochim. Acta, 51 (2006) 3957–3968.
  33. E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion inhibitors Part IV: quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some aniline derivatives, Indian J. Phys. Proc. Indian Assoc., 1 (2006) 41–62.
  34. E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion inhibitors Part III: quantum chemical studies on the efficiencies of some aromatic hydrazides and Schiff bases as corrosion inhibitors of steel in acidic medium, ARKIVOC, xi (2006) 205–220.
  35. E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion inhibitors Part V: QSAR of Benzimidazole and
    2-substituted derivatives as corrosion inhibitors by using the quantum chemical parameters, Prog. Org., 61 (2008) 11–20.
  36. N.O. Eddy, E.E. Ebenso, A. El Nemr, E.S.H. El Ashry, Quantum chemical study of the inhibition of the corrosion of mild steel in H2SO4 by some antibiotics, J. Mol. Model., 15 (2009) 1085–1092.
  37. E.S.H. El Ashry, A. El Nemr, S. Ragab, Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium, J. Mol. Model., 18 (2012) 1173–1188.
  38. D. Kumar, V. Jain, B. Rai, Imidazole derivatives as corrosion inhibitors for copper: A DFT and reactive force field study, Corros. Sci., 171 (2020) 108724, doi: 10.1016/j.corsci.2020.108724.
  39. M.M. Solomon, H. Gerengi, T. Kaya, E. Kaya, S.A. Umoren, Synergistic inhibition of St37 steel corrosion in 15% H2SO4 solution by chitosan and iodide ion additives, Cellulose, 24 (2017) 931–950.
  40. A.M. Fekry, R.R. Mohamed, Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium, Electrochim. Acta, 55 (2010) 1933–1939.
  41. Y. Zhang, B.-L. Liu, L.-J. Wang, Y.-H. Deng, S.-Y. Zhou, J.-W. Feng, Preparation, structure and properties of acid aqueous solution plasticized thermoplastic chitosan, Polymers, 11 (2019) 818, doi:10.3390/polym11050818.
  42. F. Niola, N. Basora, E. Chornet, P.F. Vidal, A rapid method for the determination of the degree of N-acetylation of chitinchitosan samples by acid hydrolysis and HPLC, Carbohydr. Res., 238 (1993) 1–9.
  43. K.M. Värum, D. Koga, O. Smidsrød, Degradation of Chitosans, T. Uragami, K. Kurita, T. Fukamizo, Eds., Chitin and Chitosan, Chitin and Chitosan in Life Science, Kodansha Scientific, Tokyo, Japan, 2001, pp. 36–42.
  44. X. Zhao, Z.-Z. Qiao, J.-X. He, Preparation of chitosan biguanidine hydrochloride and application in antimicrobial finish of wool fabric, J. Eng. Fibers Fabr., 5 (2010) 16–24.
  45. H.E. Salama, G.R. Saad, M.W. Sabaa, Synthesis, characterization, and biological activity of cross-linked chitosan biguanidine loaded with silver nanoparticles, J. Biomater. Sci., Polym. Ed., 27 (2016) 1880–1898.
  46. Y.A. Maher, M.E.A. Ali, H.E. Salama, M.W. Sabaa, Preparation, characterization and evaluation of chitosan biguanidine hydrochloride as a novel antiscalant during membrane desalination process, Arabian J. Chem., 13 (2020) 2964–2981.
  47. J. Aldana-González, H. Cervantes-Cuevas, C. Alfaro-Romo, E. Rodriguez-Clemente, J. Uruchurtu-Chavarin,
    M. Romero-Romo, M.G. Montes de Oca-Yemha, P. Morales-Gil, L.H. Mendoza-Huizar, M. Palomar-Pardave, Experimental and theoretical study on the corrosion inhibition of API 5L X52 steel in acid media by a new quinazoline derivative, J. Mol. Liq., 320 (2020) 114449, doi: 10.1016/j.molliq.2020.114449.
  48. M.A. Quraishi, D. Jamal, Technical note: CAHMT—a new and eco-friendly acidizing corrosion inhibitor, Corrosion, 56 (2000) 983.
  49. M.A. Quraishi, D. Jamal, Corrosion inhibition by fatty acid oxadiazoles for oil well steel (N-80) and mild steel, Mater. Chem. Phys., 71 (2001) 202–205.
  50. I. Felhosi, J. Telegdi, G. Palinkas, E. Kalman, Kinetics of selfassembled layer formation on iron, Electrochim. Acta, 47 (2002) 2335–2340.
  51. I. Felhösi, E. Kálmán, P. Póczik, Corrosion protection by selfassembly, Russ. J. Electrochem., 38 (2002) 230–237.
  52. D.-J. Choi, S.-J. You, J.-G. Kim, Development of an environmentally safe corrosion, scale, and microorganism inhibitor for open recirculating cooling systems, Mater. Sci. Eng., A, 335 (2002) 228–235.
  53. S. Omanovic, S.G. Roscoe, Effect of linoleate on electrochemical behavior of stainless steel in phosphate buffer, Corrosion, 56 (2000) 684–693.
  54. G. Moretti, F. Guidi, G. Grion, Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid, Corros. Sci., 46 (2004) 387–403.
  55. G. Shustak, A.J. Domb, D. Mandler, Preparation and characterization of n-alkanoic acid self-assembled monolayers adsorbed on 316L stainless steel, Langmuir, 20 (2004) 7499–7506.
  56. K. Aramaki, T. Shimura, Self-assembled monolayers of carboxylate ions on passivated iron for preventing passive film breakdown, Corros. Sci., 46 (2004) 313–328.
  57. S. Ramachandran, B. Tsai, M. Blanco, H. Chen, Y. Tang, W.A. Goddard, Selfassembled monolayer mechanism for corrosion inhibition of iron by imidazolines, Langmuir, 12 (1996) 6419–6428.
  58. A. Mahapatro, D.M. Johnson, D.N. Patel, M.D. Feldman, A.A. Ayon, C.M. Agrawal, Surface modification of functional self-assembled monolayers on 316L stainless steel via lipase catalysis, Langmuir, 22 (2006) 901–905.
  59. A. Raman, M. Dubey, I. Gouzman, E.S. Gawalt, Formation of self-assembled monolayers of alkylphosphonic acid on the native oxide surface of SS316L, Langmuir, 22 (2006) 6469–6472.
  60. A. Raman, E.S. Gawalt, Self-assembled monolayers of alkanoic acids on the native oxide surface of SS316L by solution deposition, Langmuir, 23 (2007) 2284–2288.