References
- M.S. Hasanin, S.A. Al Kiey, Environmentally benign corrosion
inhibitors based on cellulose niacin nano-composite for
corrosion of copper in sodium chloride solutions, Int. J. Biol.
Macromol., 164 (2020) 3709–3717.
- T. Yan, S. Zhang, L. Feng, Y. Qiang, L. Lu, D. Fu, Y. Wen,
J. Chen, W. Li, B. Tan, Investigation of imidazole derivatives as
corrosion inhibitors of copper in sulfuric acid: combination of
experimental and theoretical researches, J. Taiwan Inst. Chem.
Eng., 106 (2020) 118–129.
- G. Vastag, E. Szocs, A. Shaban, E. Kalman, New inhibitors for
copper corrosion, Pure Appl. Chem., 73 (2001) 1861–1869.
- L. Zhou, S. Zhang, B. Tan, L. Feng, B. Xiang, F. Chen, W. Li,
B. Xiong, T. Song, Phenothiazine drugs as novel and ecofriendly
corrosion inhibitors for copper in sulfuric acid solution,
J. Taiwan Inst. Chem. Eng., 113 (2020) 253–263.
- N. Benzbiria, S. Echihi, M.E. Belghiti, A. Thoume, A. Elmakssoudi,
A. Zarrouk, M. Zertoubi, M. Azzi, Novel synthetized
benzodiazepine as efficient corrosion inhibitor for copper in
3.5% NaCl solution, Mater. Today:. Proc., 37 (2020) 3932–3939.
- R.K. Ahmed, S. Zhang, Bee pollen extract as an eco-friendly
corrosion inhibitor for pure copper in hydrochloric acid,
J. Mol. Liq., 316 (2020) 113849, doi: 10.1016/j.molliq.2020.113849.
- J. He, Q. Li, X. Li, J. An, G. Chen, L. Zhao, W. Li, Insight into
the anti-corrosion mechanism of 2-aminobenzenethiol as the
inhibitor for copper in acid environment, J. Mol. Liq., 320 (2020)
114494, doi:10.1016/j.molliq.2020.114494.
- X. Zhang, F. Wang, Y. He, Y. Du, Study of the inhibition
mechanism of imidazoline amide on CO2 corrosion of Armco
iron, Corros. Sci. 43 (2001) 1417–1431.
- M.B. Kermani, A. Morshed, Carbon dioxide corrosion in oil and
gas production—a compendium, Corrosion, 59 (2003) 659–683.
- A. Asan, S. Soylu, T. Kıyak, F. Yıldırım, S.G. Oztas, N. Ancın,
M. Kabasakaloglu, Investigation on some Schiff bases as
corrosion inhibitors for mild steel, Corros. Sci., 48 (2006)
3933–3944.
- A.B. Shein, A.V. Denisova, Choice of effective corrosion
inhibitors for acid treatment of wells, Prot. Met., 42 (2006) 34–37.
- A. Elhebshi, M.S. El-Deab, A. El Nemr, I. Ashour, Corrosion
inhibition efficiency of cysteine-metal ions blends on low carbon
steel in chloride-containing acidic media, Int. J. Electrochem.
Sci., 14 (2019) 3897–3915.
- A. Elhebshi, A. El Nemr, M.S. El-Deab, I. Ashour, CBG-HCl as
a green corrosion inhibitor for low carbon steel in 0.5 M H2SO4
with and without 0.1 M NaCl, Desal. Water Treat., 164 (2019)
240–248.
- M.A. Deyab, Effect of cationic surfactant and inorganic anions
on the electrochemical behavior of carbon steel in formation
water, Corros. Sci. 49 (2007) 2315–2328.
- A. El Nemr, A.A. Moneer, A. Khaled, A. El Sikaily, G.F. Elsayed,
Modeling of synergistic halide additives effect on the corrosion
of aluminum in basic solution containing dye, Mater. Chem.
Phys., 144 (2014) 139–154.
- A. El Nemr, G.F. El Said, A. Khaled, A. El Sikaily, A.A. Moneer,
D.E. Abd-El-Khalek, Differences in corrosion inhibition of
water extract of Cassia fistula L. pods and o-phenanthroline on
steel in acidic solutions in the presence and absence of chloride
ions, Desal. Water Treat., 52 (2014b) 5187–5198.
- I. Ahamad, R. Prasad, M.A. Quraishi, Inhibition of mild steel
corrosion in acid solution by Pheniramine drug: experimental
and theoretical study, Corros. Sci., 52 (2010) 3033–3041.
- C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi,
Substituents effect on corrosion inhibition performance of
organic compounds in aggressive ionic solutions: a review,
J. Mol. Liq., 251 (2018) 100–118.
- C.M. Fernandes, T.D.S. Ferreira Fagundes, N. Escarpini
dos Santos, T. Shewry de M. Rocha, R. Garrett, R.M. Borges,
G. Muricy, A.L. Valverde, E.A. Ponzio, Ircinia strobilina crude
extract as corrosion inhibitor for mild steel in acid medium,
Electrochim. Acta, 312 (2019) 137–148.
- G. Ji, S. Anjum, S. Sundaram, R. Prakash, Musa paradisica
peel extract as green corrosion inhibitor for mild steel in HCl
solution, Corros. Sci., 90 (2015) 107–117.
- I. Rotaru, S. Varvara, L. Gaina, L.M. Muresan, Antibacterial
drugs as corrosion inhibitors for bronze surfaces in acidic
solutions, Appl. Surf. Sci., 321 (2014) 188–196.
- H. Li, S. Zhang, B. Tan, Y. Qiang, W. Li, S. Chen, L. Guo,
Investigation of losartan potassiumas an eco-friendly corrosion
inhibitor for copper in 0.5 M H2SO4, J. Mol. Liq., 305 (2020)
112789, doi:10.1016/j.molliq.2020.112789.
- T. Ma, B. Tan, Y. Xu, D. Yin, G. Liu, N. Zeng, G. Song, Z. Kao,
Y. Liu, Corrosion control of copper wiring by barrier CMP
slurry containing azole inhibitor: combination of simulation and
experiment, Colloids Surf., A, 599 (2020) 124872, doi: 10.1016/
j.colsurfa.2020.124872.
- H.S. Mandour, S.A. Abouel-Enein, R.M.M. Morsi, L.A. Khorshed,
Azo ligand as new corrosion inhibitor for copper metal:
spectral, thermal studies and electrical conductivity of its
novel transition metal complexes, J. Mol. Struct., 1225 (2021)
129159, doi: 10.1016/j.molstruc.2020.129159.
- T. Zhao, A. Munis, M. Zheng, J. Hu, H. Teng, L. Wei,
2-(2-Pentadecyl-4, 5-dihydro-1H-imidazol-1-yl) ethanol as a
sustainable inhibitor for copper corrosion in molten hydrated
phase change materials, J. Mol. Liq., 316 (2020) 113927,
doi: 10.1016/j.molliq.2020.113927.
- A. Jakab, M.L. Dan, N. Vaszilcsin, Corrosion behaviour of
copper in sulphuric acid in the presence of
N-methylaniline,
Analele Universității din Oradea, Fascicula: Protecția Mediului,
25 (2015) 209–216.
- A.H. Tuthill, B. Todd, J. Oldfield, Experience with Copper Alloy
Tubing, Waterboxes and Piping in MSF Desalination Plants,
Proceedings of World Congress on Desalination and Water
Re-use, International Desalination Association (IDA); Cencro
de Estudios y Expertmerocion de Obras Pubiicas (CEDEX);
Ministerio de Medio Ambiente; Ministerio de Formento;
Madrid, Spain, 1997, pp. 251–270.
- I.B. Obot, A. Meroufel, I.B. Onyeachu, A. Alenazi, A.A. Sorour,
Corrosion inhibitors for acid cleaning of desalination heat
exchangers: progress, challenges and future perspectives, J. Mol.
Liq., 296 (2019) 111760., doi:10.1016/j.molliq.2019.111760.
- T. Hodgkiess, K.H. Al-Omari, N. Bontems, B. Lesiak, Acid
cleaning of thermal desalination plant: do we need to use
corrosion inhibitors?, Desalination, 183 (2005) 209–216.
- G. Wypych, Methods of Solvent Detection and Testing,
Handbook of Solvents, Vol. 2: Use, Health, and Environment,
2019.
- A. Jmiai, B. El Ibrahimi, A. Tara, R. Oukhrib, S.J. El Issami,
O. Bara, Chitosan as an eco-friendly inhibitor for copper
corrosion in acidic medium: protocol and characterization,
Cellulose, 24 (2017) 3843–3867.
- E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion
inhibitors Part II: quantum chemical studies on the corrosion
inhibitions of steel in acidic medium by some triazole,
oxadiazole and thiadiazole derivatives, Electrochim. Acta,
51 (2006) 3957–3968.
- E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion
inhibitors Part IV: quantum chemical studies on the corrosion
inhibitions of steel in acidic medium by some aniline derivatives,
Indian J. Phys. Proc. Indian Assoc., 1 (2006) 41–62.
- E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion
inhibitors Part III: quantum chemical studies on the efficiencies
of some aromatic hydrazides and Schiff bases as corrosion
inhibitors of steel in acidic medium, ARKIVOC, xi (2006) 205–220.
- E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion
inhibitors Part V: QSAR of Benzimidazole and
2-substituted
derivatives as corrosion inhibitors by using the quantum
chemical parameters, Prog. Org., 61 (2008) 11–20.
- N.O. Eddy, E.E. Ebenso, A. El Nemr, E.S.H. El Ashry, Quantum
chemical study of the inhibition of the corrosion of mild steel in
H2SO4 by some antibiotics, J. Mol. Model., 15 (2009) 1085–1092.
- E.S.H. El Ashry, A. El Nemr, S. Ragab, Quantitative structure
activity relationships of some pyridine derivatives as corrosion
inhibitors of steel in acidic medium, J. Mol. Model., 18 (2012)
1173–1188.
- D. Kumar, V. Jain, B. Rai, Imidazole derivatives as corrosion
inhibitors for copper: A DFT and reactive force field study,
Corros. Sci., 171 (2020) 108724, doi: 10.1016/j.corsci.2020.108724.
- M.M. Solomon, H. Gerengi, T. Kaya, E. Kaya, S.A. Umoren,
Synergistic inhibition of St37 steel corrosion in 15% H2SO4
solution by chitosan and iodide ion additives, Cellulose,
24 (2017) 931–950.
- A.M. Fekry, R.R. Mohamed, Acetyl thiourea chitosan as an
eco-friendly inhibitor for mild steel in sulphuric acid medium,
Electrochim. Acta, 55 (2010) 1933–1939.
- Y. Zhang, B.-L. Liu, L.-J. Wang, Y.-H. Deng, S.-Y. Zhou,
J.-W. Feng, Preparation, structure and properties of acid
aqueous solution plasticized thermoplastic chitosan, Polymers,
11 (2019) 818, doi:10.3390/polym11050818.
- F. Niola, N. Basora, E. Chornet, P.F. Vidal, A rapid method
for the determination of the degree of N-acetylation of chitinchitosan
samples by acid hydrolysis and HPLC, Carbohydr.
Res., 238 (1993) 1–9.
- K.M. Värum, D. Koga, O. Smidsrød, Degradation of Chitosans,
T. Uragami, K. Kurita, T. Fukamizo, Eds., Chitin and Chitosan,
Chitin and Chitosan in Life Science, Kodansha Scientific,
Tokyo, Japan, 2001, pp. 36–42.
- X. Zhao, Z.-Z. Qiao, J.-X. He, Preparation of chitosan biguanidine
hydrochloride and application in antimicrobial finish of wool
fabric, J. Eng. Fibers Fabr., 5 (2010) 16–24.
- H.E. Salama, G.R. Saad, M.W. Sabaa, Synthesis, characterization,
and biological activity of cross-linked chitosan biguanidine
loaded with silver nanoparticles, J. Biomater. Sci., Polym. Ed.,
27 (2016) 1880–1898.
- Y.A. Maher, M.E.A. Ali, H.E. Salama, M.W. Sabaa, Preparation,
characterization and evaluation of chitosan biguanidine
hydrochloride as a novel antiscalant during membrane
desalination process, Arabian J. Chem., 13 (2020) 2964–2981.
- J. Aldana-González, H. Cervantes-Cuevas, C. Alfaro-Romo,
E. Rodriguez-Clemente, J. Uruchurtu-Chavarin,
M. Romero-Romo, M.G. Montes de Oca-Yemha, P. Morales-Gil, L.H. Mendoza-Huizar, M. Palomar-Pardave, Experimental and theoretical
study on the corrosion inhibition of API 5L X52 steel in
acid media by a new quinazoline derivative, J. Mol. Liq.,
320 (2020) 114449, doi: 10.1016/j.molliq.2020.114449.
- M.A. Quraishi, D. Jamal, Technical note: CAHMT—a new
and eco-friendly acidizing corrosion inhibitor, Corrosion,
56 (2000) 983.
- M.A. Quraishi, D. Jamal, Corrosion inhibition by fatty acid
oxadiazoles for oil well steel (N-80) and mild steel, Mater.
Chem. Phys., 71 (2001) 202–205.
- I. Felhosi, J. Telegdi, G. Palinkas, E. Kalman, Kinetics of selfassembled
layer formation on iron, Electrochim. Acta, 47 (2002)
2335–2340.
- I. Felhösi, E. Kálmán, P. Póczik, Corrosion protection by selfassembly,
Russ. J. Electrochem., 38 (2002) 230–237.
- D.-J. Choi, S.-J. You, J.-G. Kim, Development of an
environmentally safe corrosion, scale, and microorganism
inhibitor for open recirculating cooling systems, Mater. Sci.
Eng., A, 335 (2002) 228–235.
- S. Omanovic, S.G. Roscoe, Effect of linoleate on electrochemical
behavior of stainless steel in phosphate buffer, Corrosion,
56 (2000) 684–693.
- G. Moretti, F. Guidi, G. Grion, Tryptamine as a green iron
corrosion inhibitor in 0.5 M deaerated sulphuric acid, Corros.
Sci., 46 (2004) 387–403.
- G. Shustak, A.J. Domb, D. Mandler, Preparation and
characterization of n-alkanoic acid self-assembled monolayers
adsorbed on 316L stainless steel, Langmuir, 20 (2004) 7499–7506.
- K. Aramaki, T. Shimura, Self-assembled monolayers of
carboxylate ions on passivated iron for preventing passive film
breakdown, Corros. Sci., 46 (2004) 313–328.
- S. Ramachandran, B. Tsai, M. Blanco, H. Chen, Y. Tang,
W.A. Goddard, Selfassembled monolayer mechanism for
corrosion inhibition of iron by imidazolines, Langmuir,
12 (1996) 6419–6428.
- A. Mahapatro, D.M. Johnson, D.N. Patel, M.D. Feldman,
A.A. Ayon, C.M. Agrawal, Surface modification of functional
self-assembled monolayers on 316L stainless steel via lipase
catalysis, Langmuir, 22 (2006) 901–905.
- A. Raman, M. Dubey, I. Gouzman, E.S. Gawalt, Formation of
self-assembled monolayers of alkylphosphonic acid on the
native oxide surface of SS316L, Langmuir, 22 (2006) 6469–6472.
- A. Raman, E.S. Gawalt, Self-assembled monolayers of alkanoic
acids on the native oxide surface of SS316L by solution
deposition, Langmuir, 23 (2007) 2284–2288.