References

  1. H.-H. Rogner, World outlook for nuclear power, Energy Strategy Rev., 1 (2013) 291–295.
  2. H. Khatib, IEA World Energy Outlook 2011 – A Comment, Energy Policy, 48 (2012) 737–743.
  3. F.J. Maringer, J. Suráň, P. Kovář, B. Chauvenet, V. Peyres, E. García-Toraño, M.L. Cozzella, P. De Felice, B. Vodenik, M. Hult, U. Rosengård, M. Merimaa, L. Szücs, C. Jeffery, J.C.J. Dean, Z.Z. Tymiński, D. Arnold, R. Hinca, G. Mirescu, Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards, Appl. Radiat. Isot., 81 (2013) 255–260.
  4. B.R. Figueiredo, S.P. Cardoso, I. Portugal, J. Rocha, C.M. Silva, Inorganic ion exchangers for cesium removal from radioactive wastewater, Sep. Purif. Rev., 47 (2018) 306–336.
  5. H. Yang, M. Luo, L. Luo, H. Wang, D. Hu, J. Lin, X. Wang, Y. Wang, S. Wang, X. Bu, P. Feng, T. Wu, Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy, Chem. Mater., 28 (2016) 8774−8780.
  6. P.A. Haas, A review of information on ferrocyanide solids for removal of cesium from solutions, Sep. Sci. Technol., 28 (1993) 2479–2506.
  7. Z. Chen, Y. Wu, Y. Wei, Cesium removal from high level liquid waste utilizing a macroporous silica-based calix[4]arene-R14 adsorbent modified with surfactants, Energy Procedia, 39 (2013) 319–327.
  8. C. Xu, J. Wang, J. Chen, Solvent extraction of strontium and cesium: a review of recent progress, Solvent Extr. Ion Exch., 30 (2012) 623–650.
  9. S.-C. Jang, S.-M. Kang, Y. Haldorai, K. Giribabu, G.-W. Lee, Y.-C. Lee, M.S. Hyun, Y.-K. Han, C. Roh, Y.S. Huh, Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium, Sci. Rep., 6 (2016) 38384, doi: 10.1038/srep38384.
  10. J. Qian, J. Ma, W. He, D. Hua, Facile synthesis of Prussian blue derivate-modified mesoporous material via photoinitiated thiolene click reaction for cesium adsorption, Chem. Asian J., 10 (2015) 1738–1744.
  11. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Evaluation of new magnetic zeolite composite for removal of Cs+ and Sr2+ from aqueous solutions, kinetic, equilibrium and thermodynamic studies, C.R. Chim., 17 (2014) 108–117.
  12. M.J. Manos, K. Chrissafis, M.G. Kanatzidis, Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17, J. Am. Chem. Soc., 128 (2006) 8875–8883.
  13. J.L. Mertz, Z.H. Fard, C.D. Malliakas, M.J. Manos, M.G. Kanatzidis, Selective removal of Cs+, Sr2+ and Ni2+ by K2xMgxSn3–xS6 (x = 0.5–1) (KMS-2) relevant to nuclear waste remediation, Chem. Mater., 25 (2013) 2116–2127.
  14. Z. Zhang, X. Xu, Y. Yan, Kinetic and thermodynamic analysis of selective adsorption of Cs(I) by a novel surface whiskersupported ion-imprinted polymer, Desalination, 263 (2010) 97–106.
  15. H. Iwasaki, M. Yoshikawa, Molecularly imprinted polyacrylonitrile adsorbents for the capture of Cs+ ions, Polym. J., 48 (2016) 1151–1156.
  16. M. Shamsipur, H.R. Rajabi, Flame photometric determination of cesium ion after its preconcentration with nanoparticles imprinted with the cesium-dibenzo-24-crown-8 complex, Microchim. Acta, 180 (2013) 243–252.
  17. A. Zhang, Z. Chai, Adsorption property of cesium onto modified microporous silica-calix[4]arene-crown based supramolecular recognition materials, Ind. Eng. Chem. Res., 51 (2012) 6196−6204.
  18. A. Zhang, C. Chen, Y. Ji, S. Liu, S. Guo, Uptake of cesium and some typical metals onto hybrid calix[4]crown adsorbent with silica carrier by host-guest recognition, J. Chem. Eng. Data, 63 (2018) 1578−1587.
  19. A. Zhang, Y. Wang, J. Li, Cesium and strontium uptake utilizing a new ternary solid-state supramolecular adsorbent under a framework of group partitioning, J. Chem. Eng. Data, 62 (2017) 1440−1447.
  20. Y. Wu, S.-Y. Kim, D. Tozawa, T. Ito, T. Tada, K. Hitomi, E. Kuraoka, H. Yamazaki, K. Ishii, Study on selective separation of cesium from high level liquid waste using a microporous silica-based supramolecular recognition absorbent,
    J. Radioanal. Nucl. Chem., 293 (2012) 13–20.
  21. Q. Tao, X. Wang, D. Huang, K. Prabaharan, Y. Dai, Adsorption of cesium from aqueous solution of highly concentrated nitric acid using supermolecule/ordered mesoporous carbon composite, Water Air Soil Pollut., 229 (2018) 361, doi: 10.1007/ s11270-018-4016-6.
  22. N.A. St. John, G.A. George, Diglycidyl amine-epoxy resin networks: kinetics and mechanisms of cure, Prog. Polym. Sci., 19 (1994) 755–795.
  23. G. Yang, S.-Y. Fu, J.-P. Yang, Preparation and mechanical properties of modified epoxy resins with flexible diamines, Polymer, 48 (2007) 302–310.
  24. J. Wan, C. Li, Z.-Y. Bu, C.-J. Xu, B.-G. Li, H. Fan, A comparative study of epoxy resin cured with a linear diamine and a branched polyamine, Chem. Eng. J., 188 (2012) 160–172.
  25. R.E.C. Torrejos, G.M. Nisola, H.S. Song, L.A. Limjuco, C.P. Lawagon, K.J. Parohinog, S. Koo, J.W. Han, W.-J. Chung, Design of lithium selective crown ethers: synthesis, extraction and theoretical binding studies, Chem. Eng. J., 326 (2017) 921–933.
  26. R.E.C. Torrejos, G.M. Nisola, S.H. Min, J.W. Han, S. Koo, K.J. Parohinog, S. Lee, H. Kim, W.-J. Chung, Aqueous synthesis of 14–15 membered crown ethers with mixed O, N and S heteroatoms: experimental and theoretical binding studies with platinum-group metals, ChemPlusChem, 84 (2019) 210–221.
  27. D. Parajuli, K. Hirota, Recovery of palladium using chemically modified cedar wood powder, J. Colloid Interface Sci., 338 (2009) 371–375.
  28. Z. Zhang, G. Zhang, Y. Zhang, Z. Wang, D. Yu, X. Hu, C. Hu, X. Tang, Mechanical properties, water swelling behavior, and morphology of swellable rubber compatibilized by PVA-g-PBA, Polym. Eng. Sci., 44 (2004) 72–78.
  29. E.R. Nightingale Jr., Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  30. Y. Marcus, Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K, J. Chem. Soc., Faraday Trans., 18 (1991) 2995.
  31. Y. Choi, H. Kim, J.K. Lee, S.H. Lee, H.B. Lim, J.S. Kim, Cesium ion-selective electrodes based on 1,3-alternate thiacalix[4]biscrown-6,6, Talanta, 64 (2004) 975–980.
  32. R. Bereczki, V. Csokai, A. Grun, I. Bitter, K. Toth, Crown bridged thiacalix[4]arenes as cesium-selective ionophores in solvent polymeric membrane electrodes, Anal. Chim. Acta, 569 (2006) 42–49.
  33. H. Yang, M. Luo, L. Luo, H. Wang, D. Hu, J. Lin, X. Wang, Y. Wang, S. Wang, X. Bu, P. Feng, T. Wu, Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy, Chem. Mater., 28 (2016) 8774–8780.
  34. H. Xu, D.C. Xu, Y. Wang, Natural indices for the chemical hardness/softness of metal cations and ligands, ACS Omega, 2 (2017) 7185–7193.
  35. R. Kumpf, D. Dougherty, A mechanism for ion selectivity in potassium channels: computational studies of cation-pi interactions, Science, 261 (1993) 1708–1710.
  36. F. Pichierri, Cs+-π interactions and the design of macrocycles for the capture of environmental radiocesium
    (Cs-137): DFT, QTAIM, and CSD studies, Theor. Chem. Acc., 137 (2018) 118, doi: 10.1007/s00214-018-2298-9.
  37. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review,
    J. Hazard. Mater., 39 (2020) 122383, doi: 10.1016/j. jhazmat.2020.122383.
  38. T.A. Khan, S.A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq., 202 (2015) 165–175.
  39. Y. Wu, X. Zhang, S.-Y. Kim, Y. Wei, Simultaneous separation and recovery of Cs(I) and Sr(II) using a hybrid macrocyclic compound loaded adsorbent. Kinetic, equilibrium and dynamic adsorption studies, J. Nucl. Sci. Technol., 12 (2016) 1968–1977.
  40. Z. Chen, Y. Wu, Y. Wei, The effect of temperature and g-ray irradiation on silica-based calix[4]arene-R14 adsorbent modified with surfactants for the adsorption of cesium from nuclear waste solution, Radiat. Phys. Chem., 103 (2014) 222–226.
  41. C.P. Lawagon, G.M. Nisola, J. Mun, A. Tron, R.E.C. Torrejos, J.G. Seo, H. Kim, W.J. Chung, Adsorptive Li+ mining from liquid resources by H2TiO3: equilibrium, kinetics, thermodynamics, and mechanisms, J. Ind. Eng. Chem., 35 (2016) 347–356.
  42. U. Baig, R.A.K. Rao, A.A. Khan, M.M. Sanagi, M.A. Gondal, Removal of carcinogenic hexavalent chromium from aqueous solutions using newly synthesized and characterized polypyrrole–titanium(IV)phosphate nanocomposite, Chem. Eng. J., 280 (2015) 494–504.
  43. A. Babarinde, K. Ogundipe, K.T. Sangosanya, B.D. Akintola, A.O.E. Hassan, Comparative study on the biosorption of Pb(II), Cd(II) and Zn(II) using Lemon grass (Cymbopogan citratus): kinetics, isotherms and thermodynamics, Chem. Int., 2 (2016) 89–102.
  44. M.L. Dietz, D.D. Ensor, B. Harmon, S. Seekamp, Separation and preconcentration of cesium from acidic media by extraction chromatography, Sep. Sci. Technol., 41 (2006) 2183–2204.
  45. C. Xiao, A. Zhang, Z. Chai, Synthesis and characterization of a new polymer-based supramolecular recognition material and its adsorption for cesium, Solvent Extr. Ion Exch., 30 (2012) 17–32.
  46. A. Zhang, E. Kuraoka, M. Kumagai, Development of the chromatographic partitioning of cesium and strontium utilizing two macroporous silica-based calix[4]arene-crown and amide impregnated polymeric composites: PREC partitioning process, J. Chromatogr. A, 1157 (2007) 85–95.
  47. A. Zhang, Q. Hu, Z. Chai, SPEC: a new process for strontium and cesium partitioning utilizing two microporous silica-based supramolecular recognition agents impregnated polymeric composites, Sep. Sci. Technol., 44 (2009) 2146–2168.
  48. A. Zhang, C. Xiao, Q. Hu, Z. Chai, Synthesis of a novel microporous silica-calix[4]arene-crown supramolecular recognition material and its adsorption for cesium and some typical metals in highly active liquid waste, Solvent Extr. Ion Exch., 28 (2010) 526–542.