References
- J.P. Giesy, K. Kannan, Global distribution of perfluorooctane
sulfonate in wildlife, Environ. Sci. Technol., 35 (2001) 1339–1342.
- K. Kannan, J. Newsted, R.S. Halbrook, J.P. Giesy, Perfluorooctanesulfonate
and related fluorinated hydrocarbons in
mink and river otters from the United States, Environ. Sci.
Technol., 36 (2002) 2566–2571.
- J.W. Martin, D.M. Whittle, D.C.G. Muir, S.A. Mabury,
Perfluoroalkyl contaminants in a food web from lake Ontario,
Environ. Sci. Technol., 38 (2004) 5379–5385.
- T. Wang, Y.W. Wang, C.Y. Liao, Y.Q. Cai, G.B. Jiang, Perspectives
on the inclusion of perfluorooctane sulfonate into the stockholm
convention on persistent organic pollutants, Environ. Sci.
Technol., 43 (2009) 5171–5175.
- Y. Zhuang, B. Han, R. Chen, B. Shi, Structural transformation
and potential toxicity of iron-based deposits in drinking
water distribution systems, Water. Res., 165 (2019) 114999,
doi: 10.1016/j.watres.2019.114999.
- V.A.A. Espan, M. Mallavarapu, R. Naidu, Treatment technologies
for aqueous perfluorooctanesulfonate (PFOS) and
perfluorooctanoate (PFOA): a critical review with an emphasis
on field testing, Environ. Technol. Innovation, 4 (2015) 168–181.
- M. Trojanowicz, A. Bojanowska-Czajka, I. Bartosiewicz, K.
Kulisa, Advanced oxidation/reduction Processes treatment
for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate
(PFOS) – a review of recent advances, Chem.
Eng. J., 336 (2018) 170–199.
- G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the
interaction of transition metals with common oxidants, Environ.
Sci. Technol., 38 (2004) 3705–3712.
- S. Navalon, A. Dhakshinamoorthy, M. Alvaro, M. Antonietti,
H. Garcia, Active sites on graphene-based materials as metalfree
catalysts, Chem. Soc. Rev., 46 (2017) 4501–4529.
- Y. Zhuang, X. Wang, L. Zhang, Z. Kou, B. Shi, Confinement
Fenton-like degradation of perfluorooctanoic acid by a three
dimensional metal-free catalyst derived from waste, Appl.
Catal., B, 275 (2020) 119101, doi:10.1016/j.apcatb.2020.119101.
- L. Lyu, G.F. Yu, L.L. Zhang, C. Hu, Y. Sun, 4-Phenoxyphenolfunctionalized
reduced graphene oxide nanosheets: a metalfree
Fenton-like catalyst for pollutant destruction, Environ. Sci.
Technol., 52 (2018) 747–756.
- E. Asenath-Smith, R. Hovden, L.F. Kourkoutis, L.A. Estroff,
Hierarchically structured hematite architectures achieved
by growth in a silica hydrogel, J. Am. Chem. Soc., 137 (2015)
5184–5192.
- S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez,
F.D. Monte, ChemInform abstract: three dimensional macroporous
architectures and aerogels built of carbon nanotubes
and/or graphene: synthesis and applications, Chem. Soc. Rev.,
42 (2013) 794–830.
- Y. Chen, B. Zhang, G. Liu, X. Zhuang, E.T. Kang, Graphene
and its derivatives: switching ON and OFF, Chem. Soc. Rev.,
41 (2012) 4688–4707.
- G.K. Pradhan, D.K. Padhi, K.M. Parida, Fabrication of α-Fe2O3
Nanorod/RGO composite: a novel hybrid photocatalyst for
phenol degradation, ACS Appl. Mater. Interfaces, 5 (2013)
9101–9110.
- Y. Ren, C. Zhu, S. Zhang, C. Li, Y. Chen, P. Gao, P. Yang,
Q. Ouyang, Three-dimensional SiO2@Fe3O4 core/shell nanorod
array/graphene architecture: synthesis and electromagnetic
absorption properties, Nanoscale, 5 (2013) 12296–12303.
- Y. Zhuang, Q.Z. Liu, Y. Kong, C.C. Shen, H.T. Hao,
D.D. Dionysiou, B.Y. Shi, Enhanced antibiotic removal through
a dual-reaction-center Fenton-like process in 3D graphene
based hydrogels, Environ. Sci.: Nano, 6 (2019) 388–398.
- Y. Zhuang, X. Wang, L. Zhang, D.D. Dionysiou, B. Shi,
Fe-chelated polymer templated graphene aerogel with
enhanced Fenton-like efficiency for water treatment, Environ.
Sci.: Nano, 6 (2019) 3232–3241.
- Y. Zhuang, X. Wang, L. Zhang, D.D. Dionysiou, Z. Kou,
B. Shi, Double-network hydrogel templated FeS/graphene with
enhanced PMS activation performance: considering the effect
of the template and iron species, Environ. Sci.: Nano, 7 (2020)
817–828.
- Y. Zhuang, X. Wang, Q. Liu, B. Shi, N-doped FeOOH/RGO
hydrogels with a dual-reaction-center for enhanced catalytic
removal of organic pollutants, Chem. Eng. J., 379 (2020) 122310,
doi: 10.1016/j.cej.2019.122310.
- F. Liu, S. Chung, G. Oh, T.S. Seo, Three-dimensional graphene
oxide nanostructure for fast and efficient
water-soluble dye
removal, ACS Appl. Mater. Interfaces, 4 (2012) 922–927.
- H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Macroscopic
multifunctional graphene-based hydrogels and aerogels by a
metal ion induced self-assembly process, ACS Nano, 6 (2012)
2693–2703.
- Q. Hui, L. Cao, J. Li, J. Huang, Z. Xu, Y. Cheng, X. Kong,
K. Yanagisawa, High pseudo-capacitance in FeOOH/rGO
composites with superior performance for high rate anode in
li-ion battery, ACS Appl. Mater. Interfaces, 8 (2016) 35253–35263.
- G. Huang, C. Zhang, Y. Long, J. Wynn, Y. Liu, W. Wang, J. Gao,
Low temperature preparation of
α-FeOOH/reduced graphene
oxide and its catalytic activity for the photodegradation of an
organic dye, Nanotechnology, 24 (2013) 395601–395601.
- I.A. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye
on high-surface-area activated carbon prepared from coconut
husk: equilibrium, kinetic and thermodynamic studies,
J. Hazard. Mater., 154 (2008) 337–346.
- S.C. Smith, D.F. Rodrigues, Carbon-based nanomaterials for
removal of chemical and biological contaminants from water:
a review of mechanisms and applications, Carbon, 91 (2015)
122–143.
- H. Huang, T. Guo, K. Wang, Y. Li, G. Zhang, Efficient activation
of persulfate by a magnetic recyclable rape straw biochar
catalyst for the degradation of tetracycline hydrochloride
in water, Sci. Total Environ., 758 (2021) 143957, doi: 10.1016/j.scitotenv.2020.143957.
- T. Guo, L. Jiang, K. Wang, Y. Li, H. Huang, X. Wu, G. Zhang,
Efficient persulfate activation by hematite nanocrystals for
degradation of organic pollutants under visible light irradiation:
facet-dependent catalytic performance and degradation
mechanism, Appl. Catal., B, 286 (2021) 119883,
doi:10.1016/j.apcatb.2021.119883.
- T. Guo, L. Jiang, H. Huang, Y. Li, X. Wu, G. Zhang, Enhanced
degradation of tetracycline in water over Cu-doped hematite
nanoplates by peroxymonosulfate activation under visible light
irradiation, J. Hazard. Mater., 416 (2021) 125838, doi: 10.1016/j.jhazmat.2021.125838.