References

  1. N.H. Al-Shaalan, I. Ali, Z.A. ALOthman, L.H. Al-Wahaibi, H. Alabdulmonem, High performance removal and simulation studies of diuron pesticide in water on MWCNTs, J. Mol. Liq., 289 (2019) 111039, doi:10.1016/j.molliq.2019.111039.
  2. M.A. Khan, A.A. Alqadami, M. Otero, M.R. Siddiqui, Z.A. ALOthman, I. Alsohaimi, M. Rafatullah, A.E. Hamedelniel, Heteroatom-doped magnetic hydrochar to remove posttransition and transition metals from water: synthesis, characterization, and adsorption studies, Chemosphere, 218 (2019) 1089–1099.
  3. I. Ali, O.M.L. Alharbi, Z.A. Alothman, A. Alwarthan, Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water, Colloids Surf., B, 171 (2018) 606–613.
  4. Z.A. Alothman, A.Y. Badjah, I. Ali, Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4-tert-octylphenol endocrine disruptor in water, J. Mol. Liq., 275 (2019) 41–48.
  5. K. Vijayaraghavan, T.K. Ramanujam, N. Balasubramanian, In situ hypochlorous acid generation for the treatment of textile wastewater, Color. Technol., 117 (2001) 49–53.
  6. S. Patil, S. Renukdas, N. Patel, Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder, Int. J. Environ. Sci., 1 (2011) 711–726.
  7. I. Ali, Z.A. Alothman, A. Alwarthan, Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles, J. Mol. Liq., 241 (2017) 123–129.
  8. M.A. Khan, A.A. Alqadami, S.M. Wabaidur, M.R. Siddiqui, B.-H. Jeon, S.A. Alshareef, Z.A. Alothman, A.E. Hamedelniel, Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water, J. Hazard. Mater., 400 (2020) 123247, doi:10.1016/j.jhazmat.2020.123247.
  9. M. Gharehbaghi, F. Shemirani, A novel method for dye removal: ionic liquid‐based dispersive liquid–liquid extraction (IL-DLLE), Clean–Soil Air Water, 40 (2012) 290–297.
  10. W.-J. Lau, A.F. Ismail, Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review, Desalination, 245 (2009) 321–348.
  11. F.N. Memon, S. Memon, F.T. Minhas, Rapid transfer of methyl red using calix[6]arene as a carrier in a bulk liquid membrane, C.R. Chim., 17 (2014) 577–585.
  12. T. Poursaberi, M. Hassanisadi, Magnetic removal of reactive Black 5 from wastewater using ionic liquid grafted‐magnetic nanoparticles, Clean–Soil Air Water, 41 (2013) 1208–1215.
  13. D. Roy, K.T. Valsaraj, S.A. Kottai, Separation of organic dyes from wastewater by using colloidal gas aphrons, Sep. Sci. Technol., 27 (1992) 573–588.
  14. M. Turabık, B. Gozmen, Removal of basic textile dyes in single and multi‐dye solutions by adsorption: statistical optimization and equilibrium isotherm studies, Clean–Soil Air Water, 41 (2013) 1080–1092.
  15. I. Zaharia, I. Diaconu, E. Ruse, G. Nechifor, The transport of 3-aminophenol through bulk liquid membrane in the presence of Aliquat 336, Dig. J. Nanomater. Biostruct., 7 (2012) 1303–1314.
  16. L.D. Nghiem, P. Mornane, I.D. Potter, J.M. Perera, R.W. Cattrall, S.D. Kolev, Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs), J. Membr. Sci., 281 (2006) 7–41.
  17. M.I.G.S. Almeida, R.W. Cattrall, S.D. Kolev, Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs), J. Membr. Sci., 415 (2012) 9–23.
  18. D. Kogelnig, A. Regelsberger, A. Stojanovic, F. Jirsa, R. Krachler, B.K. Keppler, A polymer inclusion membrane based on the ionic liquid trihexyl (tetradecyl) phosphonium chloride and PVC for solid–liquid extraction of Zn(II) from hydrochloric acid solution, Monatsh. Chem., 142 (2011) 769–772.
  19. I. Akin, M. Ersoz, Preparation and characterization of CTA/m-ZnO composite membrane for transport of Rhodamine B, Desal. Water Treat., 57 (2016) 3037–3047.
  20. J.S. Gardner, J.O. Walker, J.D. Lamb, Permeability and durability effects of cellulose polymer variation in polymer inclusion membranes, J. Membr. Sci., 229 (2004) 87–93.
  21. N. Pereira, A. St. John, R.W. Cattrall, J.M. Perera, S.D. Kolev, Influence of the composition of polymer inclusion membranes on their homogeneity and flexibility, Desalination, 236 (2009) 327–333.
  22. S.V. Joshi, A.V. Rao, Cellulose triacetate membranes for seawater desalination, Desalination, 51 (1984) 307–312.
  23. R.O. Mazzei, E. Smolko, A. Torres, D. Tadey, C. Rocco, L. Gizzi, S. Strangis, Radiation grafting studies of acrylic acid onto cellulose triacetate membranes, Radiat. Phys. Chem., 64 (2002) 149–160.
  24. I.L. Alsvik, K.R. Zodrow, M. Elimelech, M.-B. Hägg, Polyamide formation on a cellulose triacetate support for osmotic membranes: effect of linking molecules on membrane performance, Desalination, 312 (2013) 2–9.
  25. C.-P. Leo, W.P.C. Lee, A.L. Ahmad, A.W. Mohammad, Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid, Sep. Purif. Technol., 89 (2012) 51–56.
  26. R. Bloch, Hydrometallurgical Separations by Solvent Membranes, J.E. Flinn, Ed., Membrane Science and Technology: Industrial, Biological, and Waste Treatment Processes, Springer US, Boston, MA, 1970, pp. 171–187.
  27. E.L. Cussler, R. Aris, A. Bhown, On the limits of facilitated diffusion, J. Membr. Sci., 43 (1989) 149–164.
  28. K.M. White, B.D. Smith, P.J. Duggan, S.L. Sheahan, E.M. Tyndall, Mechanism of facilitated saccharide transport through plasticized cellulose triacetate membranes, J. Membr. Sci., 194 (2001) 165–175.
  29. P. Kallem, G. Bharath, K. Rambabu, C. Srinivasakannan, F. Banat, Improved permeability and antifouling performance of polyethersulfone ultrafiltration membranes tailored by hydroxyapatite/boron nitride nanocomposites, Chemosphere, 268 (2021) 129306, doi: 10.1016/j.chemosphere.2020.129306.
  30. K. Rambabu, G. Bharath, P. Monash, S. Velu, F. Banat, M. Naushad, G. Arthanareeswaran, P.L. Show, Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane, Process Saf. Environ. Prot., 124 (2019) 266–278.
  31. S. Velu, K. Rambabu, P. Monash, C. Sharma, Improved hydrophilic property of PES/PEG/MnCO3 blended membranes for synthetic dye separation, Int. J. Environ. Sci., 75 (2018) 592–604.
  32. M. Baghbanzadeh, D. Rana, T. Matsuura, C.Q. Lan, Effects of hydrophilic CuO nanoparticles on properties and performance of PVDF VMD membranes, Desalination, 369 (2015) 75–84.
  33. N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes, Compos. B. Eng., 154 (2018) 388–409.
  34. P.H. Krishnamurthy, L.T. Yogarathinam, A. Gangasalam, A.F. Ismail, Influence of copper oxide nanomaterials in a poly (ether sulfone) membrane for improved humic acid and oil– water separation, J. Appl. Polym. Sci., 133 (2016) 43873, doi: 10.1002/app.43873.
  35. N. Nasrollahi, S. Aber, V. Vatanpour, N.M. Mahmoodi, Development of hydrophilic microporous PES ultrafiltration membrane containing CuO nanoparticles with improved antifouling and separation performance, Mater. Chem. Phys., 222 (2019) 338–350.
  36. K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthesis of CuO nanoparticles by precipitation method using different precursors, Energy Procedia, 34 (2013) 740–745.
  37. A. Yilmaz, G. Arslan, A. Tor, I. Akin, Selectively facilitated transport of Zn(II) through a novel polymer inclusion membrane containing Cyanex 272 as a carrier reagent, Desalination, 277 (2011) 301–307.
  38. V.A.F. Samson, K.M. Racik, S. Prathap, J. Madhavan, M.V.A. Raj, Investigations of structural, optical and dielectric studies of copper oxide nanoparticles, Mater. Today:. Proc., 8 (2019) 386–392.
  39. C. Suryanarayana, Structure and properties of nanocrystalline materials, Bull. Mater. Sci., 17 (1994) 307–346.
  40. M.S. Mauter, Y. Wang, K.C. Okemgbo, C.O. Osuji, E.P. Giannelis, M. Elimelech, Antifouling ultrafiltration membranes via postfabrication grafting of biocidal nanomaterials, ACS Appl. Mater. Interfaces, 3 (2011) 2861–2868.
  41. O. Arous, F.S. Saoud, H. Kerdjoudj, Cellulose Triacetate Properties and Their Effect on the Thin Films Morphology and Performance, IOP Conference Series Materials Science and Engineering, 12 (2010) 012001, doi: 10.1088/1757-899X/12/1/012001.
  42. R.-P. Ye, L. Lin, C.-C. Chen, J.-X. Yang, F. Li, X. Zhang, D.-J. Li, Y.-Y. Qin, Z. Zhou, Y.-G. Yao, Synthesis of robust MOF-derived Cu/SiO2 catalyst with low copper loading via sol–gel method for the dimethyl oxalate hydrogenation reaction, ACS Catal., 8 (2018) 3382–3394.
  43. K. Rambabu, S. Velu, Improved performance of CaCl2 incorporated polyethersulfone ultrafiltration membranes, Period. Polytech., Chem. Eng., 60 (2016) 181–191.
  44. S. Balta, A. Sotto, P. Luis, L. Benea, B. Van der Bruggen, J. Kim, A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO, J. Membr. Sci., 389 (2012) 155–161.
  45. R. Krishnamoorthy, V. Sagadevan, Polyethylene glycol and iron oxide nanoparticles blended polyethersulfone ultrafiltration membrane for enhanced performance in dye removal studies, e-Polymers, 15 (2015) 151–159.