References
- Classification of Radioactive Waste, General Safety Guide No.
GSG-1. International Atomic Energy Agency, Vienna, 2009.
- International Atomic Energy Agency, Advances in technologies
for treatment of low and intermediate level
radioactive liquid wastes, Technical Report Series No.370,
IAEA, Vienna, 1994.
- G. Zakrzewska-Trznadel, Advances in membrane technologies
for the treatment of liquid radioactive waste, Desalination,
321 (2013) 119–130.
- A. Miśkiewicz, A. Nowak, J. Pałka and G. Zakrzewska‐Kołtuniewicz, Liquid Low‐Level Radioactive Waste Treatment
Using an Electrodialysis Process. Membranes, 11 (2021) 324.
- S. Samatya, P. Köseoğlu, N. Kabay, A. Tuncel and M. Yüksel,
Utilization of geothermal water as irrigation water after boron
removal by monodisperse nanoporous polymers containing
NMDG in sorption–ultrafiltration hybrid process, Desalination,
364 (2015) 62–67.
- I. Hilbrandt, H. Shemer, A.S. Ruhl, R. Semiat and M. Jekel,
Comparing fine particulate iron hydroxide adsorbents for the
removal of phosphate in a hybrid adsorption/ultrafiltration
system, Sep. Pur. Technol., 221 (2019) 23–28.
- S. Mozia and M. Tomaszewska, Treatment of surface water
using hybrid processes adsorption on PAC and ultrafiltration,
Desalination, 162 (2004) 23–31.
- M. Vaziri, S. M. T. Ghomsheh, A. Azimi and M. Mirzaei, Hybrid
of Adsorption and Nanofiltration Processes as a Capable
Removal Method for HANs Removal, South African J. Chem.
Eng., 36 (2021) 1–7.
- B. Maimoun, A. Djafer, L. Djafer, R.-M. Marin-Ayral and
A. Ayral, Wastewater treatment using a hybrid process coupling
adsorption on marl and microfiltration, Membr. Wat. Treat.,
Vol. 11, No. 4 (2020) 001–011.
- I. Zinicovscaia, N. Yushin, D. Abdusamadzoda, D.Grozdov
and M. Shvetsova, Efficient Removal of Metals from Synthetic
and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast
Saccharomyces cerevisiae, Materials, 13 (2020) 3624.
- W. E. Oliveira, A. S. Franca, L. S. Oliveira and S. D. Rocha,
Untreated coffee husks as biosorbents for the removal of
heavy metals from aqueous solutions, J. Haz. Mat., 152 (2008)
1073–1081.
- A. Witek-Krowiak, R. G. Szafran and Sz. Modelski, Biosorption
of heavy metals from aqueous solutions onto peanut shell as
a low-cost biosorbent, Desalination, 265 (2011) 126–134.
- S. P. Mishra, D. Tiwari, Biosorptive behavior of some dead
biomasses in the removal of Sr(85+89) from aqueous solutions,
J. Radioanal. Nucl. Chem., 251, No. 1 (2002) 47–53.
- S. C. Tripathi, R. Kannan, P. S. Dhami, P. W. Naik, S. K. Munshi,
P. K. Dey, N. A. Salvi and S. Chattopadhyay, Modified Rhizopus
arrhizus biomass for sorption of 241Am and other radionuclides,
J. Radioanal. Nucl. Chem., 287 (2011) 691–695.
- P. Sar, S. K. Kazy and S.F. D’Souza, Radionuclide remediation
using a bacterial biosorbent, Int. Biodeteriorat. Biodegrad.,
54 (2004) 193–202.
- K. Inoue, S. Alam, Refining and Mutual Separation of Rare
Earths Using Biomass Wastes, JOM, 65 No. 10 (2013) 1341–1347.
- A. M. Zoll, J. Schijf, A surface complexation model of YREE
sorption on Ulva lactuca in 0.05–5.0 M NaCl solutions, Geochim.
et Cosmochim. Act., 97 (2012) 183–199.
- L. J. Umali, J.R. Duncan and J.E. Burgess, Performance of
dead Azolla filiculoides biomass in biosorption of Au from
wastewater, Biotechnol. Let., 28 (2006) 45–49.
- C. Mack, B. Wilhelmi, J.R. Duncan and J.E. Burgess, Biosorption
of precious metals, Biotechnol. Adv., 25 (2007) 264–271.
- J. P. Ibañez, Y. Umetsu, Potential of protonated alginate beads
for heavy metals uptake, Hydromet., 64 (2002) 89–99.
- E. G. Deze, S. K. Papageorgiou, E. P. Favvas and F. K. Katsaros,
Porous alginate aerogel beads for effective and rapid heavy
metal sorption from aqueous solutions: Effect of porosity in
Cu2+ and Cd2+ ion sorption, Chem. Eng. J., 209 (2012) 537–546.
- M. Ghasemi, A. R. Keshtkar, R. Dabbagh and S. J. Safdari,
Biosorption of uranium(VI) from aqueous solutions by
Ca-pretreated Cystoseira indica alga: Breakthrough curves
studies and modeling, J. Haz. Mat., 189 (2011) 141–149.
- A. Maureira, B. L. Rivas, Metal ions recovery with alginic acid
coupled to ultrafiltration membrane, Europ. Polym. J., 45 (2009)
573–581.
- N. Fatin-Rouge, A. Dupont, A. Vidonne, J. Dejeu, P. Fievet and
A. Foissy, Removal of some divalent cations from water by
membrane-filtration assisted with alginate, Wat. Res., 40 (2006)
1303 – 1309.
- C. Cojocaru, G. Zakrzewska-Trznadel and A. Miskiewicz,
Removal of cobalt ions from aqueous solutions by polymer
assisted ultrafiltration using experimental design approach,
Part 2: Optimization of hydrodynamic conditions for a crossflow
ultrafiltration module with rotating part, J. Haz. Mat.,
169 (2009) 610–620.
- N. Uzal, A. Jaworska, A. Miśkiewicz, G.Zakrzewska-Trznadel
and C. Cojocaru, Optimization of Co2+ ions removal from
water solutions by application of soluble PVA and sulfonated
PVA polymers as complexing agents, J. Colloid Interface Sci.,
362 (2011) 615–624.
- M. H. Kafshgari, M. Mansouri, M. Khorram and S. R. Kashani,
Kinetic modeling: a predictive tool for the adsorption of zinc
ions onto calcium alginate beads, Int. J. Ind. Chem., 4:5 (2013)
1–7.
- G. Zakrzewska-Trznadel, M. Harasimowicz, A. Miskiewicz,
A. Jaworska, E. Dłuska and S. Wroński, Reducing fouling and
boundary-layer by application of helical flow in ultrafiltration
module employed for radioactive wastes processing,
Desalination, 240 (2009) 108–116.