References

  1. A. Toolabi, M. Malakootian, M.T. Ghaneian, A. Esrafili, M.H. Ehrampoush, M. Askar Shahi, M. Tabatabaei, M. Khatami, Optimizing the photocatalytic process of removing diazinon pesticide from aqueous solutions and effluent toxicity assessment via a response surface methodology approach, Rend. Lincei Sci. Fis. Nat., 30 (2019) 155–165.
  2. E. Fatahi, S. Joursaraei, K. Parivar, A. Moghadamnia, Influence of diazinon on spermatogenesis in mice, Koomesh J. Semnan Univ. Med. Sci., 25 (2007) 75–81.
  3. N. Daneshvar, S. Aber, M.S. Dorraji, A. Khataee, M.H. Rasoulifard, Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light, Sep. Purif. Technol., 58 (2007) 91–98.
  4. A. Jonidi-Jafari, M. Shirzad-Siboni, J.-K. Yang, M. Naimi- Joubani, M. Farrokhi, Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite, J. Taiwan Inst. Chem. Eng., 50 (2015) 100–107.
  5. G. Moussavi, H. Hossaini, S.J. Jafari, M. Farokhi, Comparing the efficacy of UVC, UVC/ZnO and VUV processes for oxidation of organophosphate pesticides in water, J. Photochem. Photobiol., A, 290 (2014) 86–93.
  6. L. Ferencz, A. Balog, A pesticide survey in soil, water and foodstuffs from central Romania, Carpathian J. Earth Environ. Sci., 5 (2010) 111–118.
  7. L. Pogačnik, M. Franko, Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection, Biosens. Bioelectron., 14 (1999) 569–578.
  8. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  9. F. Akbari, M. Khodadadi, A. Hossein Panahi, A. Naghizadeh, Synthesis and characteristics of a novel FeNi3/SiO2/TiO2 magnetic nanocomposites and its application in adsorption of humic acid from simulated wastewater: study of isotherms and kinetics, Environ. Sci. Pollut. Res., 26 (2019) 32385–32396.
  10. M. Khodadadi, T.J. Al-Musawi, M. Kamranifar, M.H. Saghi, A. Hossein Panahi, A comparative study of using barberry stem powder and ash as adsorbents for adsorption of humic acid, Environ. Sci. Pollut. Res., 26 (2019) 26159–26169.
  11. M. Shirzad Siboni, M. Samadi, J. Yang, S.M. Lee, Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study, Environ. Technol., 32 (2011) 1573–1579.
  12. M. Shirzad Siboni, M.-T. Samadi, J.-K. Yang, S.-M. Lee, Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study, Desal. Water Treat., 40 (2012) 77–83.
  13. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53 (1999) 51–59.
  14. A. Hossein Panahi, A. Meshkinian, S.D. Ashrafi, M. Khan, A. Naghizadeh, G. Abi, H. Kamani, Survey of
    sono-activated persulfate process for treatment of real dairy wastewater, Int. J. Environ. Sci. Technol. (Tehran), 17 (2020) 93–98.
  15. T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A. Hossein Panahi, M.F. Silva, G. Abi, Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using Box–Behnken response surface methodology, Catal. Lett., 149 (2019) 1186–1196.
  16. B. Barikbin, F.S. Arghavan, A. Othmani, A. Hossein Panahi, N. Nasseh, Degradation of tetracycline in Fenton and heterogeneous Fenton like processes by using FeNi3 and FeNi3/SiO2 catalysts, Desal. Water Treat., 200 (2020) 262–274.
  17. N. Radhika, R. Selvin, R. Kakkar, A. Umar, Recent advances in nano-photocatalysts for organic synthesis, Arabian J. Chem., 12 (2019) 4550–4578.
  18. S. Dehghan, A.J. Jafari, M. FarzadKia, A. Esrafili, R.R. Kalantary, Visible-light-driven photocatalytic degradation of Metalaxyl by reduced graphene oxide/Fe3O4/ZnO ternary nanohybrid: influential factors, mechanism and toxicity bioassay, J. Photochem. Photobiol., A, 375 (2019) 280–292.
  19. Z. Wang, M. Chen, J. Shu, Y. Li, One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase, J. Alloys Compd., 682 (2016) 432–440.
  20. V.L. Pham, D.-G. Kim, S.-O. Ko, Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate, Chemosphere, 191 (2018) 639–650.
  21. A. Fakhri, S. Rashidi, I. Tyagi, S. Agarwal, V.K. Gupta, Photodegradation of erythromycin antibiotic by
    γ-Fe2O3/SiO2 nanocomposite: response surface methodology modeling and optimization, J. Mol. Liq., 214 (2016) 378–383.
  22. M. Hazarika, I. Saikia, J. Das, C. Tamuly, M.R. Das, Biosynthesis of Fe2O3@SiO2 nanoparticles and its photocatalytic activity, Mater. Lett., 164 (2016) 480–483.
  23. A. Mohagheghian, K. Ayagh, K. Godini, M. Shirzad- Siboni, Enhanced photocatalytic activity of Fe3O4-WO3-APTES for azo dye removal from aqueous solutions in the presence of visible irradiation, Part. Sci. Technol., 37 (2019) 358–370.
  24. G. Zhao, Z. Mo, P. Zhang, B. Wang, X. Zhu, R. Guo, Synthesis of graphene/Fe3O4/NiO magnetic nanocomposites and its application in photocatalytic degradation the organic pollutants in wastewater, J. Porous Mater., 22 (2015) 1245–1253.
  25. S. Wu, H. Hu, Y. Lin, J. Zhang, Y.H. Hu, Visible light photocatalytic degradation of tetracycline over TiO2, Chem. Eng. J., 382 (2020) 122842, doi: 10.1016/j.cej.2019.122842.
  26. L. Chen, C. Zhao, D.D. Dionysiou, K.E. O’Shea, TiO2 photocatalytic degradation and detoxification of cylindrospermopsin, J. Photochem. Photobiol., A, 307 (2015) 115–122.
  27. M. Khodadadi, T.J. Al-Musawi, H. Kamani, M.F. Silva, A. Hossein Panahi, The practical utility of the synthesis FeNi3@SiO2@TiO2 magnetic nanoparticles as an efficient photocatalyst for the humic acid degradation, Chemosphere, 239 (2020) 124723, doi: 10.1016/j.chemosphere.2019.124723.
  28. E. Bazrafshan, T.J. Al-Musawi, M.F. Silva, A. Hossein Panahi, M. Havangi, F.K. Mostafapur, Photocatalytic degradation of catechol using ZnO nanoparticles as catalyst: optimizing the experimental parameters using the Box–Behnken statistical methodology and kinetic studies, Microchem. J., 147 (2019) 643–653.
  29. N. Nasseh, A. Hossein Panahi, M. Esmati, N. Daglioglu, A. Asadi, H. Rajati, F. Khodadoost, Enhanced photocatalytic degradation of tetracycline from aqueous solution by a novel magnetically separable FeNi3/SiO2/ZnO nanocomposite under simulated sunlight: efficiency, stability, and kinetic studies, J. Mol. Liq., 301 (2020) 112434, doi: 10.1016/ j.molliq.2019.112434.
  30. Z.B. Yu, Y.P. Xie, G. Liu, G.Q.M. Lu, X.L. Ma, H.-M. Cheng, Selfassembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution, J. Mater. Chem. A, 1 (2013) 2773–2776.
  31. B. Li, Y. Wang, Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures, J. Phys. Chem. C, 114 (2010) 890–896.
  32. S. Balachandran, N. Prakash, K. Thirumalai, M. Muruganandham, M. Sillanpää, M. Swaminathan, Facile construction of heterostructured BiVO4–ZnO and its dual application of greater solar photocatalytic activity and selfcleaning property, Ind. Eng. Chem. Res., 53 (2014) 8346–8356.
  33. S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis, Appl. Catal., B, 176 (2015) 396–428.
  34. J. Yang, J. Wang, X. Li, D. Wang, H. Song, Synthesis of urchinlike Fe3O4@ SiO2@ZnO/CdS core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under visible light, Catal. Sci. Technol., 6 (2016) 4525–4534.
  35. N. Nasseh, T.J. Al-Musawi, M.R. Miri, S. Rodriguez-Couto, A. Hossein Panahi, A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photo-catalyst for degradation of tamoxifen in the presence of simulated sunlight, Environ. Pollut., 261 (2020) 114127, doi:10.1016/j.envpol.2020.114127.
  36. A. Ajmal, I. Majeed, R.N. Malik, M. Iqbal, M.A. Nadeem, I. Hussain, S. Yousaf, G. Mustafa, M. Zafar, M.A. Nadeem, Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders, J. Environ. Chem. Eng., 4 (2016) 2138–2146.
  37. S. Chabri, A. Dhara, B. Show, D. Adak, A. Sinha, N. Mukherjee, Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing, Catal. Sci. Technol., 6 (2016) 3238–3252.
  38. A. Maleki, F. Moradi, B. Shahmoradi, R. Rezaee, S.-M. Lee, The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate, J. Mol. Liq., 297 (2020) 111918, doi: 10.1016/j.molliq.2019.111918.
  39. C.S. Rajan, Nanotechnology in groundwater remediation, Int. J. Environ. Sci. Dev., 2 (2011) 182–187.
  40. J. Gao, B. Liu, J. Wang, X. Jin, R. Jiang, L. Liu, B. Wang, Y. Xu, Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO, Spectrochim. Acta, Part A, 77 (2010) 895–901.
  41. N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A. Hossein Panahi, Synthesis of FeNi3/SiO2/CuS magnetic
    nano-composite as a novel adsorbent for Congo Red dye removal, Int. J. Environ. Anal. Chem., (2020) 1–21, doi:10.1080/03067319.2020.1754810.
  42. H. Sun, B. Dong, G. Su, R. Gao, W. Liu, L. Song, L. Cao, Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity, Appl. Surf. Sci., 343 (2015) 181–187.
  43. A. Falah-Shojaei, A. Shams-Nateri, M. Ghomashpasand, Synthesis and characterization of C-TiO2@Fe3O4 magnetic nanoparticles for degradation Direct Blue 71 under visible light irradiation, J. Color Sci. Technol., 4 (2014) 339–346.
  44. A. Jahantiq, R. Ghanbari, A. Hossein Panahi, S.D. Ashraf, A.D. Khatibi, Photocatalytic degradation of
    2,4,6-trichlorophenol in aqueous solutions using synthesized Fe-doped TiO2 nanoparticles via response surface methodology, Desal. Water Treat., 183 (2020) 366–373.
  45. Y. Zandsalimi, A. Maleki, B. Shahmoradi, S. Dehestani, R. Rezaee, G. McKay, Photocatalytic removal of
    2,4-dichlorophenoxyacetic acid from aqueous solution using tungsten oxide doped zinc oxide nanoparticles immobilized on glass beads, Environ. Technol., (2020) 1–36, doi: 10.1080/09593330.2020.1797901.
  46. Y. Abdollahi, A. Abdullah, Z. Zainal, N.A. Yusof, Synthesis and characterization of manganese doped ZnO nanoparticles, Int. J. Basic Appl. Sci. (Dubai), 11 (2011) 62–69.
  47. S. Vajapara, S. Patel, C.P. Bhasin, Efficient adsorption and photocatalytic degradation of Malachite Green dye using bentonite natural adsorbent, Int. J. Nano. Chem., 3 (2017) 33–37.
  48. A. Akyol, M. Bayramoğlu, Photocatalytic degradation of Remazol Red F3B using ZnO catalyst, J. Hazard. Mater., 124 (2005) 241–246.
  49. M. Khodadadi, M. Samadi, A. Rahmani, R. Maleki, A. Allahresani, R. Shahidi, Determination of organophosphorous and carbamat pesticides residue in drinking water resources of Hamadan in 2007, Iran, J. Health Environ., 2 (2010) 250–257.
  50. W. Leng, W. Zhu, J. Ni, Z. Zhang, J. Zhang, C.N. Cao, Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode, Appl. Catal., A, 300 (2006) 24–35.
  51. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water
    by UV-irradiated titania, Appl. Catal., B, 39 (2002) 75–90.
  52. H. Gao, T. Kan, S. Zhao, Y. Qian, X. Cheng, W. Wu, X. Wang, L. Zheng, Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer, J. Hazard. Mater., 261 (2013) 83–90.
  53. Z. Noorimotlagh, G. Shams, H. Godini, R. Darvishi, Study of ZnO nanoparticles photocatalytic process efficiency in decolorization of methylene blue and COD removal from synthetic wastewater, Yafteh, 14 (2013) 51–61.
  54. E. Norabadi, A. Hossein Panahi, R. Ghanbari, A. Meshkinian, H. Kamani, S.D. Ashrafi, Optimizing the parameters of amoxicillin removal in a photocatalysis/ozonation process using Box–Behnken response surface methodology, Desal. Water Treat., 192 (2020) 234–240.
  55. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112 (2004) 269–278.
  56. D.J. Naghan, A. Azari, N. Mirzaei, A. Velayati, F.A. Tapouk, S. Adabi, M. Pirsaheb, K. Sharafi, Parameters effecting on photocatalytic degradation of the phenol from aqueous solutions in the presence of ZnO nanocatalyst under irradiation of UV-C light, Bulg. Chem. Commun., 47 (2015) 14–18.
  57. E. Dehghanifard, A.J. Jafari, R.R. Kalantari, M. Gholami, A. Esrafili, Photocatalytic removal of aniline from synthetic wastewater using ZnO nanoparticle under ultraviolet irradiation, Iran. J. Health Environ., 5 (2012) 167–178.
  58. Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J., 119 (2006) 55–59.
  59. K. Salehi, R. Rahmani, B. Mansouri, N. Azadi, H. Ghafouri, U. Hamesadeghi, Performance evaluation of Ba:TiO2 nanocomposite in photocatalytic degradation of Direct blue 71 in presence of sunlight, Zanko J. Med. Sci., 18 (2017) 70–80.
  60. F.S. Arghavan, T.J. Al-Musawi, E. Allahyari, M.H. Moslehi, N. Nasseh, A. Hossein Panahi, Complete degradation of tamoxifen using FeNi3@SiO2@ZnO as a photocatalyst with UV light irradiation: a study on the degradation process and sensitivity analysis using ANN tool, Mater. Sci. Semicond. Process., 128 (2021) 105725, doi:10.1016/j.mssp.2021.105725.
  61. F.S. Arghavan, A. Hossein Panahi, N. Nasseh, M. Ghadirian, Adsorption-photocatalytic processes for removal of pentachlorophenol contaminant using FeNi3/SiO2/ZnO magnetic nanocomposite under simulated solar light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 7462–7475.
  62. B. Shahmoradi, I. Ibrahim, K. Namratha, N. Sakamoto, S. Ananda, R. Somashekar, K. Byrappa, Surface modification of indium doped ZnO hybrid nanoparticles with n-butylamine, Int. J. Chem. Eng. Res., 2 (2010) 107–117.
  63. H. Chen, H. Luo, Y. Lan, T. Dong, B. Hu, Y. Wang, Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron, J. Hazard. Mater., 192 (2011) 44–53.
  64. M. Gar Alalm, A. Tawfik, S. Ookawara, W. Treatment, Solar photocatalytic degradation of phenol by TiO2/AC prepared by temperature impregnation method, Desal. Water Treat., 57 (2016) 835–844.