References

  1. D. Barceló, B. Žonja, A. Ginebreda, Toxicity tests in wastewater and drinking water treatment processes: a complementary assessment tool to be on your radar, J. Environ. Chem. Eng., 8 (2020) 104262, doi:10.1016/j.jece.2020.104262.
  2. H.B. Lu, Y. Yu, Y.X. Zhou, F. Xing, A quantitative evaluation method for wastewater toxicity based on a microbial fuel cell, Ecotoxicol. Environ. Saf., 183 (2019) 109589, doi: 10.1016/ j.ecoenv.2019.109589.
  3. W.T. Zhao, Q. Sui, X. Huang, Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic–anoxic–oxic process for highly toxic coke wastewater treatment, Sci. Total Environ., 635 (2018) 716–724.
  4. J. Zan, H. Song, S.Y. Zuo, X.R. Chen, D.S. Xia, D.Y. Li, MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fentonlike photocatalysts for the elimination of toxic organics in wastewater, J. Cleaner Prod., 246 (2020) 118971, doi:10.1016/ j.jclepro.2019.118971.
  5. D.M. EL-Mekkawi, N.A. Abdelwahab, W.A.A. Mohamed, N.A. Taha, M.S.A. Abdel-Mottaleb, Solar photocatalytic treatment of industrial wastewater utilizing recycled polymeric disposals as TiO2 supports, J. Cleaner Prod., 249 (2020) 119430, doi: 10.1016/j.jclepro.2019.119430.
  6. H.B. He, Z.Z. Luo, C.L. Yu, Embellish zinc tungstate nanorods with silver chloride nanoparticles for enhanced photocatalytic, antibacterial and antifouling performance, Colloids Surf., A, 613 (2021) 126099, doi:10.1016/j.colsurfa.2020.126099.
  7. M. Martín-Sómer, C. Pablos, A. de Diego, R. van Grieken, Á. Encinas, V.M. Monsalvo, J. Marugán, Novel macroporous 3D photocatalytic foams for simultaneous wastewater disinfection and removal of contaminants of emerging concern, Chem. Eng. J., 366 (2019) 449–459.
  8. H.B. He, Z.Z. Luo, C.L. Yu, Diatomite-anchored g-C3N4 nanosheets for selective removal of organic dyes, J. Alloys Compd., 816 (2020) 152652, doi: 10.1016/j.jallcom.2019.152652.
  9. C. Gong, C.Z. Jiang, Preparation of nickel oxide under magnetic field strengthening conditions and its photocatalytic activity, J. Shenyang Ligong Univ., 39 (2020) 46–51.
  10. C.M. Park, Y.M. Kim, K.H. Kim, D. Wang, C.M. Su, Y.M. Yoon, Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: a mini review, Chemosphere, 221 (2019) 392–402.
  11. T. Rasheed, M. Adeel, F. Nabeel, M. Bilal, H.M.N. Iqbal, TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal, Sci. Total Environ., 688 (2019) 299–311.
  12. Y. Hendrix, A. Lazaro, Q.L. Yu, H.J.H. Brouwers, Influence of synthesis conditions on the properties of photocatalytic titania-silica composites, J. Photochem. Photobiol., A, 371 (2019) 25–32.
  13. S.L. Wang, S.H. Lin, D.Q. Zhang, G.S. Li, M.K.H. Leung, Controlling charge transfer in quantum-size titania for photocatalytic applications, Appl. Catal., B, 215 (2017) 85–92.
  14. H.B. He, Z.Z. Luo, C.L. Yu, Multifunctional ZnWO4 nanoparticles for photocatalytic removal of pollutants and disinfection of bacteria, J. Photochem. Photobiol., A, 401 (2020) 112735, doi:10.1016/j.jphotochem.2020.112735.
  15. H.B. He, Z.Z. Luo, Z.Y. Tang, C.L. Yu, Controllable construction of ZnWO4 nanostructure with enhanced performance for photosensitized Cr(VI) reduction, Appl. Surf. Sci., 490 (2019) 460–468.
  16. B. Barrocas, L.D. Chiavassa, M. Conceição Oliveira, O.C. Monteiro, Impact of Fe, Mn co-doping in titanate nanowires photocatalytic performance for emergent organic pollutants removal, Chemosphere, 250 (2020) 126240, doi: 10.1016/j.chemosphere.2020.126240.
  17. J.X. Lu, D.L. Li, Y. Chai, L. Li, M. Li, Y.Y. Zhang, J. Liang, Rational design and preparation of nanoheterostructures based on zinc titanate for solar-driven photocatalytic conversion of CO2 to valuable fuels, Appl. Catal., B, 256 (2019) 117800, doi: 10.1016/j.apcatb.2019.117800.
  18. S. Rahut, R. Panda, J.K. Basu, Solvothermal synthesis of a layered titanate nanosheets and its photocatalytic activity: effect of Ag doping, J. Photochem. Photobiol., A, 341 (2017) 12–19.
  19. G.G. Liu, K. Han, H.Q. Ye, C.Y. Zhu, Y.P. Gao, Y. Liu, Y.H. Zhou, Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment, Chem. Eng. J., 320 (2017) 74–80.
  20. C.C. Tsai, L.C. Chen, T.F. Yeh, H. Teng, In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination, J. Alloys Compd., 546 (2013) 95–101.
  21. Y. Zhang, C. Han, G. Zhang, D. Dionysiou, M. Nadagoudaf, PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine, Chem. Eng. J., 268 (2015) 170–179.
  22. A. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev., 56 (1939) 978–982.
  23. V. Lojpur, S. Ćulubrk, M.D. Dramićanin, Ratiometric luminescence thermometry with different combinations of emissions from Eu3+ doped Gd2Ti2O7 nanoparticles, J. Lumin., 169 (2016) 534–538.
  24. P.K. Kulriya, T. Yao, S.M. Scott, S. Nanda, J. Lian, Influence of grain growth on the structural properties of the nanocrystalline Gd2Ti2O7, J. Nucl. Mater., 487 (2017) 373–379.
  25. M. Setvin, X. Shi, J. Hulva, T. Simschitz, G.S. Parkinson, M. Schmid, C. Di Valentin, A. Selloni, U. Diebold, Methanol on anatase TiO2 (101): mechanistic insights into photocatalysis, ACS Catal., 7 (2017) 7081–7091.
  26. H. Arthur, J. Nethercot, Prediction of Fermi energies and photoelectric thresholds based on electronegativity concepts, Phys. Rev. Lett., 33 (1974) 1088–1091.