References

  1. G. Ahmed, H.M. Anawar, D.T. Takuwa, I.T. Chibua, G.S. Singh, K. Sichilongo, Environmental assessment of fate, transport and persistent behavior of dichlorodiphenyltrichloroethanes and hexachlorocyclohexanes in land and water ecosystems, Int. J. Environ. Sci. Technol., 12 (2015) 2741–2756.
  2. M.D. Hernando, M. Mezcua, A.R. Fernández-Alba, D. Barceló, Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments, Talanta, 69 (2006) 334–342.
  3. Y. Lu, S. Song, R. Wang, Z. Liu, J. Meng, A.J. Sweetman, Impacts of soil and water pollution on food safety and health risks in China, Environ. Int., 77 (2015) 5–15.
  4. J.P. Candido, S.J. Andrade, A.L. Fonseca, F.S. Silva, M.R.A.A. Silva, M.M. Kondo, Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions, Environ. Sci. Pollut. Res. Int., 23 (2017) 19911–19920.
  5. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, N.S. Thomaidis, J. Xu, Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J. Hazard. Mater., 323 (2017) 74–98.
  6. C. Amor, L. Marchão, M.S. Lucas, J.A. Peres, Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: a review, Water, 11 (2019) 205, doi: 10.3390/w11020205.
  7. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  8. M. Swaminathan, M. Muruganandham, M. Sillanpaa, Advanced oxidation processes for wastewater treatment, Int. J. Photoenergy, 2013 (2013) 1–3.
  9. F. Zaviska, P. Drogui, G. Mercier, J.F. Blais, Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels: application à la dégradation des polluants réfractaires, Revue des Sciences de L Eau, 22 (2009) 535–564.
  10. M. Khraisheh, J. Kim, L. Campos, A.H. Al-Muhtaseb, A. Al-Hawari, M. Al Ghouti, Removal of pharmaceutical and personal care products (PPCPs) pollutants from water by novel TiO2–Coconut Shell Powder (TCNSP) composite, J. Ind. Eng. Chem., 20 (2014) 979–987.
  11. P.S.M. Kumar, A.P. Francis, T. Devasena, Biosynthesized and chemically synthesized titania nanoparticles: comparative analysis of antibacterial activity, J. Environ. Nanotechnol., 3 (2014) 73–81.
  12. M.B. Tahir, A. Ahmad, T. Iqbal, M. Ijaz, S. Muhammad, S.M. Siddeeg, Advances in photocatalysis approach for the removal of toxic personal care product in aqueous environment, Environ. Dev. Sustainable, 22 (2020) 6029–6050.
  13. U.I. Gayaa, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol., C, 9 (2008) 1–12
  14. R. Ameta, S. Benjamin, A. Ameta, S.C. Ameta, Photocatalytic degradation of organic pollutants: a review, Mater. Sci. Forum, 734 (2013) 247–272.
  15. E.M. Saggioro, A.S. Oliveira, T. Pavesi, C.G. Maia, L.F.V. Ferreira, J.C. Moreira, Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes, Molecules, 16 (2011) 10370–10386.
  16. D. Dodoo-Arhin, F.P. Buabeng, J.M. Mwabora, P.N. Amaniampong, H. Agbe, E. Nyankson, D.O. Obada, N.Y. Asiedu, The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants, Heliyon, 4 (2018) e00681, doi: 10.1016/j.heliyon.2018.e00681.
  17. Y. Ammari, K. El Atmani, L. Bay, I. Bakas, S. Qourzal, I. Ait Ichou, Elimination of a mixture of two dyes by photocatalytic degradation based on TiO2 P-25 Degussa, Mater. Today:. Proc., 22 (2020) 126–129.
  18. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Titanium dioxide photocatalysis for pharmaceutical wastewater treatment, Environ. Chem. Lett., 12 (2014) 27–47.
  19. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  20. J. Perkowski, S. Bzdon, A. Bulska, W.K. Jóźwiak, Decomposition of detergents present in car-wash sewage by titania photoassisted oxidation, Polish J. Environ. Stud., 15 (2006) 457–465.
  21. J.P. Zotesso, E.S. Cossich, V. Janeiro, C.R.G. Tavares, Treatment of hospital laundry wastewater by UV/H2O2 process, Environ. Sci. Pollut. Res. Int., 24 (2017) 6278–6287.
  22. A. Marszałek, E. Puszczało, Effect of photooxidation on nanofiltration membrane fouling during wastewater treatment from the confectionery industry, Water, 12 (2020) 793, doi: 10.3390/w12030793.
  23. https://docs.rs-online.com/45d7/0900766b81506d14.pdf
  24. M. Spychała, T.H. Nguyen, Preliminary study on greywater treatment using nonwoven textile filters, Appl. Sci., 9 (2019) 3205, doi: 10.3390/app9153205.
  25. M. Sanchez, M.J. Rivero, I. Ortiz, Photocatalytic oxidation of grey water over titanium dioxide suspensions, Desalination, 262 (2010) 141–146.
  26. H.T. Nguyen, R. Błażejewski, M. Spychała, Greywater treatment in Lamella settler and combined filters, Desal. Water Treat., 203 (2020) 202–210.
  27. M. Spychała, Effectiveness of non-woven filters for wastewater treatment with a constant level of damming, Acta Sci. Pol. Formatio Circumiectus, 15 (2016) 19–34 (in Polish).
  28. A. Gross, A. Maimon, Y. Alfiya, E. Friedler, Greywater Reuse, Taylor & Francis Group, New York, USA, 2015.
  29. E. de Aguiardo Couto, M.L. Calijuri, P. Peixoto Assemany, A. da Fonseca Santiago, I. de Castro Carvalho, Greywater production in airports: qualitative and quantitative assessment, Resour. Conserv. Recycl., 77 (2013) 44–51.
  30. F. Li, K. Wichmann, R. Otterpohl, Review of the technological approaches for grey water treatment and reuses, Sci. Total Environ., 407 (2009) 3439–3449.
  31. M.S. Zipf, I.G. Pinheiro, M.G. Conegero, Simplified greywater treatment systems: slow filters of sand and slate waste followed by granular activated carbon, J. Environ. Manage., 176 (2016) 119–127.
  32. M. Oteng-Peprah, M.A. Acheampong, N.K. de Vries, Greywater characteristics, treatment systems, reuse strategies and user perception: a review, Water Air Soil Pollut., 229 (2018) 229–255.
  33. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  34. M.A. Quiroz, E.R. Bandala, C.A. Martínez-Huitle, Advanced Oxidation Processes (AOPs) for Removal of Pesticides from Aqueous Media, M. Stoytcheva, Ed., Pesticides – Formulations, Effects, Fate, IntechOpen, 2011, pp. 686–730, doi: 10.5772/13597. Available at: https://www.intechopen.com/chapters/13032
  35. M. Bartolomeu, M.G.P.M.S. Neves, M.A.F. Faustino, A. Almeida, Wastewater chemical contaminants: remediation by advanced oxidation processes, Photochem. Photobiol. Sci., 17 (2018) 1573–1598.
  36. D. Alrousan, A. Afkhami, K. Bani-Melhem, P. Dunlop, Organic degradation potential of real greywater using
    TiO2-based advanced oxidation processes, Water, 12 (2020) 2811, doi: 10.3390/w12102811.
  37. G. Yashni, A. Al-Gheethi, R.M.S.R. Mohamed, S.N.H. Arifin, V.A. Shanmugan, A.H.M. Kassim, Photocatalytic degradation of Basic red 51 dye in artificial bathroom greywater using zinc oxide nanoparticles, Mater. Today:. Proc., 31 (2020) 136–139.
  38. M.I. Sari, T.E. Agustina, E. Melwita, T. Aprianti, Color and COD Degradation in Photocatalytic Process of Procion Red by Using TiO2 Catalyst under Solar Irradiation, Proceedings of the 3rd International Conference on Construction and Building Engineering (ICONBUILD) 2017, AIP Conf. Proc. 1903, 040017-1–040017-5, doi:10.1063/1.5011536.
  39. Q. Hu, B. Liu, Z. Zhang, M. Song, X. Zhao, Temperature effect on the photocatalytic degradation of methyl orange under UV-Vis light irradiation, J. Wuhan Univ. Technol. Mater. Sci. Ed., 25 (2010) 210–213.
  40. F. Meng, Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, S. Wang, Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: differences in photoactive mechanism, J. Colloid Interface Sci., 532 (2018) 321–330.
  41. S. Liu, M. Lim, R. Fabris, W.K. Chow, M. Drikas, G. Korshin, R. Amal, Multi-wavelength spectroscopic and chromatography study on the photocatalytic oxidation of natural organic matter, Water Res., 44 (2010) 2525–2532.
  42. T.P. Farrell, B. Magnuson, Absorption, distribution and excretion of four forms of titanium dioxide pigment in the rat, J. Food Sci., 82 (2017) 1985–1993.
  43. N.S. Allen, R. McIntyre, J.M. Kerrod, C. Hill, M. Edge, Photostabilisation and UV blocking efficacy of coated macro and nano-rutile titanium dioxide particles in paints and coatings, J. Polym. Environ., 26 (2018) 4243–4257.
  44. F. Sun, T.-T. Li, H. Ren, Q. Jiang, H.-K. Peng, Q. Lin, C.-W. Lou, J.-H. Lin, PP/TiO2 melt-blown membranes for oil/water separation and photocatalysis: manufacturing techniques and property evaluations, Polymers, 11 (2019) 775, doi: 10.3390/polym11050775.
  45. C.J. Cabello-Alvarado, Z.V. Quiñones-Jurado, V.J. Cruz-Delgado, C.A. Avila-Orta, Pigmentation and degradative activity of TiO2 on polyethylene films using masterbatches fabricated using variable-frequency
    ultrasound-assisted meltextrusion, Materials, 13 (2020) 3855, doi: 10.3390/ma13173855.
  46. E. Smulders, E. Sung, Laundry Detergents, Ingredients and Products, Wiley-VCH Verlag GmbH & Co. KGaA, Ed., Ullmann’s Encyclopedia of Industrial Chemistry, Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011. Available at: http://doi.wiley.com/10.1002/14356007.o15_o13
  47. K. Priyanka, N. Remya, M. Behera, Greywater treatment using modified solar photocatalyst degradation, kinetics, pathway and toxicity analysis, Sep. Purif. Technol., 251 (2020) 117319, doi: 10.1016/j.seppur.2020.117319.
  48. R. Fiorenza, S.A. Balsamo, L. D’Urso, S. Sciré, M.V. Brundo, R. Pecoraro, E.M. Scalisi, V. Privitera, G. Impellizzeri, CeO2 for water remediation: comparison of various advanced oxidation processes, Catalysts, 10 (2020) 446, doi: 10.3390/catal10040446.
  49. S. Saran, P. Arunkumar, G. Manjari, S.P. Devipriya, Reclamation of grey water for non-potable purposes using pilot-scale solar photocatalytic tubular reactors, Environ. Technol., 40 (2019) 3190–3199.
  50. N. Hassanshahi, A. Karimi-Jashni, Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water, Ecotoxicol. Environ. Saf., 161 (2018) 683–90.
  51. P. Hegedűs, E. Szabó-Bárdos, O. Horváth, K. Horváth, P. Hajós, TiO2-mediated photocatalytic mineralization of a non-ionic detergent: comparison and combination with other advanced oxidation procedures, Materials, 8 (2015) 231–250.
  52. R. Krakowiak, J. Musial, R. Frankowski, M. Spychala, J. Mielcarek, B. Dobosz, R. Krzyminiewski, M. Sikorski,
    W. Bendzinska-Berus, E. Tykarska, R. Blazejewski, A. Zgoła-Grześkowiak, B.J. Stanisz, D.T. Mlynarczyk, T. Goslinski, Phthalocyanine-grafted titania nanoparticles for photodegradation of ibuprofen, Catalysts, 10 (2020) 1328, doi:10.3390/catal10111328.
  53. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology:
    a review, Water Res., 44 (2010) 2997–3027.
  54. H. Piazena, E. Perez-Rodrigues, D.P. Häder, F. Lopez-Figueroa, Penetration of solar radiation into the water column of the central subtropical Atlantic Ocean—optical properties and possible biological consequences, Deep Sea Res. Part II, 49 (2002) 3513–3528.
  55. J. Jing, M. Liu, V.L. Colvin, W. Li, W.W. Yu, Photocatalytic degradation of nitrogen-containing organic compounds over TiO2, J. Mol. Catal. A: Chem., 351 (2011) 17–28.
  56. G.O. Quintana, E. Fagnani, F.P. Candello, J.R. Guimarães, The dichromate method versus the photoelectrochemical method: the synergistic influence of turbidity and chlorides on chemical oxygen demand analysis, J. Braz. Chem. Soc., 29 (2018) 490–498.
  57. J. Li, G. Luo, J.H. Ling, X. Jing. J. Lyu, Analytical approaches for determining chemical oxygen demand in water bodies: a review, Crit. Rev. Anal. Chem., 48 (2018) 47–65.
  58. M.A. Oturan, A. Jean-Jacques, Advanced oxidation processes in water/wastewater treatment: principles and applications: a review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  59. H.T. Tao, Y.S. Fan, X.Q. Li, Z.R. Zhang, W.S. Hou, Investigation of formaldehyde and TVOC in underground malls in Xi’an, China: concentrations, sources, and affecting factors, Build Environ., 85 (2015) 85–93.
  60. E.M. Nadia, B. Moustapha, A.I. Yahia, UV/TiO2 photocatalytic oxidation of commercial pesticide in aqueous solution, Am. J. Innov. Res. Appl. Sci., 5 (2018) 36–43.
  61. S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment, IWA Publishing, UK, 2004.