References

  1. R.E. Hester, R.M. Harrison, Waste as a Resource, Royal Society of Chemistry, United Kingdom, 2013.
  2. I. Robles, E. O’Dwyer, M. Guo, Waste-to-resource value chain optimisation: combining spatial, chemical and technoeconomic aspects, Water Res., 178 (2020) 115842 (1–39), doi: 10.1016/j.watres.2020.115842.
  3. EEA, Waste Prevention in Europe—the Status in 2014, European Environment Agency, Copenhagen, 2015.
  4. M. Gajewska, H. Obarska-Pempkowiak, E. Wojciechowska, Hydrofitowe Oczyszczanie Wód i Ścieków, PWN, Warszawa, 2010.
  5. J.D. Resende, M.A. Nolasco, S.A. Pacca, Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands, Resour. Conserv. Recycl., 148 (2019) 170–177.
  6. S. Wu, T. Lyu, Y. Zhao, J. Vymazal, C.A. Arias, H. Brix, Rethinking intensification of constructed wetlands as a green ecotechnology for wastewater treatment, Environ. Sci. Technol., 52 (2018) 1693–1694.
  7. R.B. Liu, Y.Q. Zhao, L. Doherty, Y. Hu, X.D. Hao, A review of incorporation of constructed wetland with other treatment processes, Chem. Eng. J., 279 (2015) 220–230.
  8. I. Kruszelnicka, D. Ginter-Kramarczyk, B. Wyrwas, J. Idkowiak, Evaluation of surfactant removal efficiency in selected domestic wastewater treatment plants in Poland, J. Environ. Health Sci. Eng., 17 (2019) 1257–1264.
  9. M. Gajewska, H. Obarska-Pempkowiak, Sezonowe Zmiany Skuteczności Usuwania Zanieczyszczeń w Hybrydowych Systemach Hydrofitowych, Oczyszczanie Ścieków i Przeróbka Osadów Ściekowych, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2007.
  10. W. Armstrong, D. Cousins, J. Armstrong, D.W. Turner, P.M. Beckett, Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis, Ann. Bot., 86 (2000) 687–703.
  11. H. Brix, Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives, Water Sci. Technol., 30 (1994) 209–223.
  12. J. Vymazal, Constructed wetlands for wastewater treatment: five decades of experience, Environ. Sci. Technol., 45 (2011) 61–69.
  13. M. Wang, D.Q. Zhang, J.W. Dong, S.K. Tan, Constructed wetlands for wastewater treatment in cold climate – a review, J. Environ. Sci., 57 (2017) 293–311.
  14. P. Kowalik, H. Obarska-Pempkowiak, Polish Experience, With Sewage Purification in Constructed Wetlands, Backhuys Publishers, Leiden, 1998, pp. 217–225.
  15. V. Luederitz, E. Eckert, M. Lange-Weber, A. Lange, R.M. Gersberg, Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands, J. Ecol. Eng., 18 (2001) 157–171.
  16. J. Vymazal, L. Kröpfelová, Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic, J. Ecol. Eng., 25 (2005) 606–621.
  17. Y. Zhang, Design of a Constructed Wetland for Wastewater Treatment and Reuse in Mount Pleasant, All Graduate Plan B and Other Reports, Utah, 2012.
  18. C.C. Tanner, R.H. Kadlec, M.M. Gibbs, J.P.S. Sukias, M.L. Nguyen, Nitrogen processing gradients in subsurface-flow treatment wetlands: influence of wastewater characteristics, J. Ecol. Eng., 18 (2002) 499–520.
  19. T.S. Jamieson, G.W. Stratton, R. Gordon, A. Madani, The use of aeration to enhance ammonia nitrogen removal in constructed wetlands, Can. Biosyst. Eng., 45 (2003) 9–14.
  20. J. Puigagut, J. VilaseĖor, J.J. Salas, E. Béceras, J. García, Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: a comparative study, J. Ecol. Eng., 30 (2007) 312–319.
  21. M.E. Pérez-López, A.E. Arreola-Ortiz, P. Malagón Zamora, Evaluation of detergent removal in artificial wetlands (biofilters), J. Ecol. Eng., 122 (2018) 135–142.
  22. R. Thomas, R. Gough, C. Freeman, Linear alkylbenzene sulfonate (LAS) removal in constructed wetlands: The role of plants in the treatment of a typical pharmaceutical and personal care product, J. Ecol. Eng., 106 (2017) 415–422.
  23. K. Jardak, P. Drogui, R. Daghrir, Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes, Environ. Sci. Pollut. Res., 23 (2016) 3195–3216.
  24. European Committee of Surfactants and their Organic Intermediates (CESIO), Surfactants Statistic for West Europe, 2013.
  25. U. Zoller, Non-ionic surfactants in reused water: are activated sludge/soil aquifer treatments sufficient?, Water Res., 28 (1994) 1625–1629.
  26. L. Traczyk, A. Szymanski, B. Wyrwas, T. Jaroszynski, Z. Lukaszewski, Efficiency of non-ionic surfactant removal in biological sewage treatment plants, Pol. J. Environ. Stud., 15 (2006) 493–499.
  27. D. Kopiec, J. Zembrzuska, I. Budnik, B. Wyrwas, Z. Dymaczewski, M. Komorowska-Kaufman, Z. Lukaszewski, Identification of non-ionic surfactants in elements of the aquatic environment, Tenside Surfactants Deterg., 52 (2015) 380–385.
  28. J. Zembrzuska, I. Budnik, Z. Lukaszewski, Monitoring of selected non-ionic surfactants in river water by liquid chromatographytandem mass spectrometry, J. Environ. Manage., 169 (2016a) 247–252.
  29. J. Zembrzuska, I. Budnik, Z. Lukaszewski, Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions, Sci. Total Environ., 557–558 (2016b) 612–619.
  30. J. Zembrzuska, I. Budnik, Z. Lukaszewski, Separation and determination of homogeneous fatty alcohol ethoxylates by liquid chromatography with multistage mass spectrometry, J. Sep. Sci., 37 (2014) 1694–1702.
  31. D Kopiec, R. Rydlichowski, J. Zembrzuska, I. Budnik, Z.Łukaszewski, Removal of non-ionic surfactants in an activate sludge treatment plant, Tenside Surfactants Deterg., 51 (2014) 445–450.
  32. D. Nowicka, I. Budnik, J. Zembrzuska, Biodegradation of model nonionic surfactant by the bacterial consortium coming from industrial wastewater using high performance liquid chromatography coupled with electrospray mass spectrometry, Tenside Surfactants Deterg., 50 (2013) 31–35.
  33. D. Witkowska, D. Ginter-Kramarczyk, A. Holderna-Odachowska, I. Budnik, E. Kaczorek, Z. Łukaszewski,
    J. Zembrzuska, Biodegradation of oxyethylated fatty alcohols by bacterium Pseudomonas alcaligenes; AE biodegradation by Pseudomonas alcaligenes, Tenside Surfactants Deterg., 55 (2018) 43–48.
  34. I. Budnik, J. Zembrzuska, Z. Łukaszewski, Bacterial strains from river water having the ability to split alcohol ethoxylates by central fission, Environ. Sci. Pollut. Res., 23 (2016) 14231–14239.