References

  1. A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  2. G. Micale, L. Rizzuti, A. Cipollina, Seawater Desalination: Conventional and Renewable Energy Processes, Springer-Verlag, Berlin & Heidelberg, 2009.
  3. N.C. Darre, G.S. Toor, Desalination of water: a review, Curr. Pollut. Rep., 4 (2018) 104–111.
  4. A. Panchal, L.T. Swientoniewski, M. Omarova, T.Y. Yu, D.H. Zhang, D.A. Blake, V. John, Y.M. Lvov, Bacterial proliferation on clay nanotube Pickering emulsions for oil spill bioremediation, Colloids Surf., B, 164 (2018) 27–33.
  5. A.S. Ismail, H.S. El-Sheshtawy, N.M. Khalil, Bioremediation process of oil spill using fatty-lignocellulose sawdust and its enhancement effect, Egypt. J. Pet., 28 (2019) 205–211.
  6. D.W. Lee, H. Lee, B.-O. Kwon, J.S. Khim, U.H. Yim, B.S. Kim, J.-J. Kim, Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment, Environ. Pollut., 241 (2018) 254–264.
  7. X.X. Cao, X. Huang, P. Liang, K. Xiao, Y.J. Zhou, X.Y. Zhang, B.E. Logan, A new method for water desalination using microbial desalination cells, Environ. Sci. Technol., 43 (2009) 7148–7152.
  8. Z. Borjas, A. Esteve-Núñez, J.M. Ortiz, Strategies for merging microbial fuel cell technologies in water desalination processes: start-up protocol and desalination efficiency assessment, J. Power Sources, 356 (2017) 519–528.
  9. V. Nagaraj, L. Skillman, D. Li, G. Ho, Review – Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes, J. Environ. Manage., 223 (2018) 586–599.
  10. N. Dombrowski, J.A. Donaho, T. Gutierrez, K.W. Seitz, A.P. Teske, B.J. Baker, Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill, Nat. Microbiol., 1 (2016) 16057, doi:10.1038/ nmicrobiol.2016.57.
  11. H. Frank, K.E. Fussmann, E. Rahav, E.B. Zeev, Chronic effects of brine discharge from large-scale seawater reverse osmosis desalination facilities on benthic bacteria, Water Res., 151 (2019) 478–487.
  12. N.S. Abd Samad, A. Amid, D.N. Jimat, N.A. Ab. Shukor, Isolation and identification of halophilic bacteria producing halotolerant protease, Sci. Herit. J., 1 (2017) 7–9.
  13. A. Ventosa, J.J. Nieto, A. Oren, Biology of moderately halophilic aerobic bacteria, Microbiol. Mol. Biol. Rev., 62 (1998) 504–544.
  14. R. Uma Maheswari, C. Mohanapriya, P. Vijay, K.S. Rajmohan, M. Gopinath, Bioelectricity production and desalination of Halomonas sp. – the preliminary integrity approach, Biofuels, 10 (2019) 355–363.
  15. M.B. Gomes, E.E. Gonzales-Limache, S.T.P. Sousa, B.M. Dellagnezze, A. Sartoratto, L.C.F. Silva, L.M. Gieg, E. Valoni, R.S. Souza, A.P.R. Torres, M.P. Sousa, S.O. De Paula, C.C. Silva, V.M. Oliveira, Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under
    high-salinity conditions, Int. Biodeterior. Biodegrad., 126 (2018) 231–242.
  16. S. Spring, Halobacillus, Bergey’s Manual of Systematics of Archaea and Bacteria, Wiley, Hoboken, New Jersey, 2015, pp. 1–10.
  17. I.M. Ibrahim, S.A. Konnova, E.N. Sigida, E.V. Lyubun, A.Y. Muratova, Y.P. Fedonenko, К. Elbanna, Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: exopolysaccharide production, crude oil degradation, and heavy metal tolerance, Extremophiles, 24 (2020) 157–166.
  18. C.L. Nanca, K.D. Neri, A.C.R. Ngo, R.M. Bennett, G.R. Dedeles, Degradation of polycyclic aromatic hydrocarbons by moderately halophilic bacteria from Luzon salt beds, J. Health Pollut., 8 (2018) 180915,
    doi: 10.5696/2156-9614-8.19.180915.
  19. N. Pade, S. Köcher, M. Roeßler, I. Hänelt, V. Müller, Bioenergetics of the moderately halophilic bacterium Halobacillus halophilus: composition and regulation of the respiratory chain, Appl. Environ. Microbiol., 79 (2013) 3839–3846.
  20. R. Taheri, A. Razmjou, G. Szekely, J. Hou, G.R. Ghezelbash, Biodesalination—on harnessing the potential of nature’s desalination processes, Bioinspiration Biomimetics, 11 (2016) 041001,
    doi: 10.1088/1748-3190/11/4/041001.
  21. J. Beal, N.G. Farny, T. Haddock-Angelli, V. Selvarajah, G.S. Baldwin, R. Buckley-Taylor, M. Gershater, D. Kiga, J. Marken, V. Sanchania, A. Sison, C.T. Workman, iGEM Interlab Study Contributors, Robust estimation of bacterial cell count from optical density, Commun. Biol., 3 (2020) 1–29, doi: 10.1038/s42003-020-01127-5.
  22. S.Y. Chen, W. Shen, F. Yu, W.L. Hu, H.P. Wang, Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+ and Pb2+, J. Appl. Polym. Sci., 117 (2010) 8–15, doi: 10.1002/app.31477
  23. K.S.M. Rahman, J. Thahira-Rahman, P. Lakshmanaperumalsamy, I.M. Banat, Towards efficient crude oil degradation by a mixed bacterial consortium, Bioresour. Technol., 85 (2002) 257–261.
  24. L. Bardi, A. Mattei, S. Steffan, M. Marzona, Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability, Enzyme Microb. Technol., 27 (2000) 709–713.
  25. S.H. Saum, F. Pfeiffer, P. Palm, M. Rampp, S.C. Schuster, V. Müller, D. Oesterhelt, Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride‐dependent bacterium Halobacillus halophilus, Environ. Microbiol., 15 (2013) 1619–1633.
  26. Y. Ohno, I. Yano, M. Masui, Effect of NaCl concentration and temperature on the phospholipid and fatty acid compositions of a moderately halophilic bacterium, Pseudomonas halosaccharolytica, J. Biochem., 85 (1979) 413–421.
  27. E.Y. Wuytack, A.M.J. Diels, C.W. Michiels, Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure, Int. J. Food Microbiol., 77 (2002) 205–212.
  28. M. Gobbettia, R. Lanciotti, M. De Angelis, M.R. Corbo, R. Massini, P. Fox, Study of the effects of temperature, pH, NaCl, and aw on the proteolytic and lipolytic activities of cheese-related lactic acid bacteria by quadratic response surface methodology, Enzyme Microb. Technol., 25 (1999) 795–809.
  29. B.J. Marshall, D.F. Ohye, J.H. Christian, Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium, Appl. Microbiol., 21 (1971) 363–364.
  30. C.O. Obuekwe, S.S. Al-Zarban, Bioremediation of crude oil pollution in the Kuwaiti desert: the role of adherent microorganisms, Environ. Int., 24 (1998) 823–834.
  31. S.A. Akhavan, G.P.I. Dejban, M. Emami, A.M. Nakhoda, Isolation and characterization of crude oil degrading Bacillus spp., Iran. J. Environ. Health Sci. Eng., 5 (2008) 149–154.
  32. A.P. Karlapudi, T.C. Venkateswarulu, J. Tammineedi, L. Kanumuri, B.K. Ravuru, V. Ramu Dirisala, V.P. Kodali, Role of biosurfactants in bioremediation of oil pollution-a review, Petroleum, 4 (2018) 241–249.
  33. I.M. Head, D.M. Jones, W.F.M. Röling, Marine microorganisms make a meal of oil, Nat. Rev. Microbiol., 4 (2006) 173–182.
  34. X.J. Xu, W.M. Liu, S.H. Tian, W. Wang, Q.G. Qi, P. Jiang, X.M. Gao, F.J. Li, H.Y. Li, H.W. Yu, Petroleum hydrocarbondegrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis, Front. Microbiol., 9 (2018) 2885, doi: 10.3389/fmicb.2018.02885.
  35. K.H. Kim, B.L. Jia, C.O. Jeon, Identification of Trans-4-Hydroxy- L-Proline as a compatible solute and its biosynthesis and molecular characterization in Halobacillus halophilus, Front. Microbiol., 8 (2017) 2054, doi:10.3389/fmicb.2017.02054.
  36. A. Ebadi, N.A.K. Sima, M. Olamaee, M. Hashemi, R.G. Nasrabadi, Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium, J. Adv. Res., 8 (2017) 627–633.
  37. A. Ebadi, N.A.K. Sima, M. Olamaee, M. Hashemi, R.G. Nasrabadi, Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria, J. Environ. Manage., 219 (2018) 260–268.
  38. P. Parthipan, E. Preetham, L.L. Machuca, P.K.S.M. Rahman, K. Murugan, A. Rajasekar, Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1, Front. Microbiol.,
    8 (2017) 193, doi: 10.3389/fmicb.2017.00193.
  39. N.R. Maddela, L. Scalvenzi, K. Venkateswarlu, Microbial degradation of total petroleum hydrocarbons in crude oil: a field-scale study at the low-land rainforest of Ecuador, Environ. Technol., 38 (2017) 2543–2550.
  40. R.L. Eklund, L.C. Knapp, P.A. Sandifer, R.C. Colwell, Oil spills and human health: contributions of the Gulf of Mexico Research Initiative, GeoHealth, 3 (2019) 391–406.
  41. G. Poi, A. Aburto-Medina, P.C. Mok, A.S. Ball, E. Shahsavari, Large scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium, Ecol. Eng., 102 (2017) 64–71.