References
- A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in
seawater desalination technologies, Desalination, 221 (2008)
47–69.
- G. Micale, L. Rizzuti, A. Cipollina, Seawater Desalination:
Conventional and Renewable Energy Processes, Springer-Verlag, Berlin & Heidelberg, 2009.
- N.C. Darre, G.S. Toor, Desalination of water: a review, Curr.
Pollut. Rep., 4 (2018) 104–111.
- A. Panchal, L.T. Swientoniewski, M. Omarova, T.Y. Yu,
D.H. Zhang, D.A. Blake, V. John, Y.M. Lvov, Bacterial
proliferation on clay nanotube Pickering emulsions for oil spill
bioremediation, Colloids Surf., B, 164 (2018) 27–33.
- A.S. Ismail, H.S. El-Sheshtawy, N.M. Khalil, Bioremediation
process of oil spill using fatty-lignocellulose sawdust and its
enhancement effect, Egypt. J. Pet., 28 (2019) 205–211.
- D.W. Lee, H. Lee, B.-O. Kwon, J.S. Khim, U.H. Yim, B.S. Kim,
J.-J. Kim, Biosurfactant-assisted bioremediation of crude oil
by indigenous bacteria isolated from Taean beach sediment,
Environ. Pollut., 241 (2018) 254–264.
- X.X. Cao, X. Huang, P. Liang, K. Xiao, Y.J. Zhou, X.Y. Zhang,
B.E. Logan, A new method for water desalination using
microbial desalination cells, Environ. Sci. Technol., 43 (2009)
7148–7152.
- Z. Borjas, A. Esteve-Núñez, J.M. Ortiz, Strategies for merging
microbial fuel cell technologies in water desalination processes:
start-up protocol and desalination efficiency assessment,
J. Power Sources, 356 (2017) 519–528.
- V. Nagaraj, L. Skillman, D. Li, G. Ho, Review – Bacteria and
their extracellular polymeric substances causing biofouling on
seawater reverse osmosis desalination membranes, J. Environ.
Manage., 223 (2018) 586–599.
- N. Dombrowski, J.A. Donaho, T. Gutierrez, K.W. Seitz,
A.P. Teske, B.J. Baker, Reconstructing metabolic pathways
of hydrocarbon-degrading bacteria from the Deepwater
Horizon oil spill, Nat. Microbiol., 1 (2016) 16057, doi:10.1038/
nmicrobiol.2016.57.
- H. Frank, K.E. Fussmann, E. Rahav, E.B. Zeev, Chronic effects
of brine discharge from large-scale seawater reverse osmosis
desalination facilities on benthic bacteria, Water Res., 151 (2019)
478–487.
- N.S. Abd Samad, A. Amid, D.N. Jimat, N.A. Ab. Shukor,
Isolation and identification of halophilic bacteria producing
halotolerant protease, Sci. Herit. J., 1 (2017) 7–9.
- A. Ventosa, J.J. Nieto, A. Oren, Biology of moderately halophilic
aerobic bacteria, Microbiol. Mol. Biol. Rev., 62 (1998) 504–544.
- R. Uma Maheswari, C. Mohanapriya, P. Vijay, K.S. Rajmohan,
M. Gopinath, Bioelectricity production and desalination of
Halomonas sp. – the preliminary integrity approach, Biofuels,
10 (2019) 355–363.
- M.B. Gomes, E.E. Gonzales-Limache, S.T.P. Sousa,
B.M. Dellagnezze, A. Sartoratto, L.C.F. Silva, L.M. Gieg,
E. Valoni, R.S. Souza, A.P.R. Torres, M.P. Sousa, S.O. De Paula,
C.C. Silva, V.M. Oliveira, Exploring the potential of halophilic
bacteria from oil terminal environments for biosurfactant
production and hydrocarbon degradation under
high-salinity
conditions, Int. Biodeterior. Biodegrad., 126 (2018) 231–242.
- S. Spring, Halobacillus, Bergey’s Manual of Systematics of
Archaea and Bacteria, Wiley, Hoboken, New Jersey, 2015,
pp. 1–10.
- I.M. Ibrahim, S.A. Konnova, E.N. Sigida, E.V. Lyubun,
A.Y. Muratova, Y.P. Fedonenko, К. Elbanna, Bioremediation
potential of a halophilic Halobacillus sp. strain, EG1HP4QL:
exopolysaccharide production, crude oil degradation, and
heavy metal tolerance, Extremophiles, 24 (2020) 157–166.
- C.L. Nanca, K.D. Neri, A.C.R. Ngo, R.M. Bennett, G.R. Dedeles,
Degradation of polycyclic aromatic hydrocarbons by moderately
halophilic bacteria from Luzon salt beds, J. Health Pollut.,
8 (2018) 180915,
doi: 10.5696/2156-9614-8.19.180915.
- N. Pade, S. Köcher, M. Roeßler, I. Hänelt, V. Müller, Bioenergetics
of the moderately halophilic bacterium Halobacillus halophilus:
composition and regulation of the respiratory chain, Appl.
Environ. Microbiol., 79 (2013) 3839–3846.
- R. Taheri, A. Razmjou, G. Szekely, J. Hou, G.R. Ghezelbash,
Biodesalination—on harnessing the potential of nature’s
desalination processes, Bioinspiration Biomimetics, 11 (2016)
041001,
doi: 10.1088/1748-3190/11/4/041001.
- J. Beal, N.G. Farny, T. Haddock-Angelli, V. Selvarajah,
G.S. Baldwin, R. Buckley-Taylor, M. Gershater, D. Kiga,
J. Marken, V. Sanchania, A. Sison, C.T. Workman, iGEM Interlab
Study Contributors, Robust estimation of bacterial cell count
from optical density, Commun. Biol., 3 (2020) 1–29, doi: 10.1038/s42003-020-01127-5.
- S.Y. Chen, W. Shen, F. Yu, W.L. Hu, H.P. Wang, Preparation of
amidoximated bacterial cellulose and its adsorption mechanism
for Cu2+ and Pb2+, J. Appl. Polym. Sci., 117 (2010) 8–15,
doi: 10.1002/app.31477
- K.S.M. Rahman, J. Thahira-Rahman, P. Lakshmanaperumalsamy,
I.M. Banat, Towards efficient crude oil degradation by a mixed
bacterial consortium, Bioresour. Technol., 85 (2002) 257–261.
- L. Bardi, A. Mattei, S. Steffan, M. Marzona, Hydrocarbon
degradation by a soil microbial population with β-cyclodextrin
as surfactant to enhance bioavailability, Enzyme Microb.
Technol., 27 (2000) 709–713.
- S.H. Saum, F. Pfeiffer, P. Palm, M. Rampp, S.C. Schuster, V. Müller,
D. Oesterhelt, Chloride and organic osmolytes: a hybrid strategy
to cope with elevated salinities by the moderately halophilic,
chloride‐dependent bacterium Halobacillus halophilus, Environ.
Microbiol., 15 (2013) 1619–1633.
- Y. Ohno, I. Yano, M. Masui, Effect of NaCl concentration and
temperature on the phospholipid and fatty acid compositions
of a moderately halophilic bacterium, Pseudomonas
halosaccharolytica, J. Biochem., 85 (1979) 413–421.
- E.Y. Wuytack, A.M.J. Diels, C.W. Michiels, Bacterial inactivation
by high-pressure homogenisation and high hydrostatic
pressure, Int. J. Food Microbiol., 77 (2002) 205–212.
- M. Gobbettia, R. Lanciotti, M. De Angelis, M.R. Corbo,
R. Massini, P. Fox, Study of the effects of temperature, pH,
NaCl, and aw on the proteolytic and lipolytic activities of
cheese-related lactic acid bacteria by quadratic response surface
methodology, Enzyme Microb. Technol., 25 (1999) 795–809.
- B.J. Marshall, D.F. Ohye, J.H. Christian, Tolerance of bacteria
to high concentrations of NaCl and glycerol in the growth
medium, Appl. Microbiol., 21 (1971) 363–364.
- C.O. Obuekwe, S.S. Al-Zarban, Bioremediation of crude
oil pollution in the Kuwaiti desert: the role of adherent
microorganisms, Environ. Int., 24 (1998) 823–834.
- S.A. Akhavan, G.P.I. Dejban, M. Emami, A.M. Nakhoda,
Isolation and characterization of crude oil degrading Bacillus
spp., Iran. J. Environ. Health Sci. Eng., 5 (2008) 149–154.
- A.P. Karlapudi, T.C. Venkateswarulu, J. Tammineedi,
L. Kanumuri, B.K. Ravuru, V. Ramu Dirisala, V.P. Kodali, Role
of biosurfactants in bioremediation of oil pollution-a review,
Petroleum, 4 (2018) 241–249.
- I.M. Head, D.M. Jones, W.F.M. Röling, Marine microorganisms
make a meal of oil, Nat. Rev. Microbiol., 4 (2006) 173–182.
- X.J. Xu, W.M. Liu, S.H. Tian, W. Wang, Q.G. Qi, P. Jiang,
X.M. Gao, F.J. Li, H.Y. Li, H.W. Yu, Petroleum hydrocarbondegrading
bacteria for the remediation of oil pollution under
aerobic conditions: a perspective analysis, Front. Microbiol.,
9 (2018) 2885, doi: 10.3389/fmicb.2018.02885.
- K.H. Kim, B.L. Jia, C.O. Jeon, Identification of Trans-4-Hydroxy-
L-Proline as a compatible solute and its biosynthesis and
molecular characterization in Halobacillus halophilus, Front.
Microbiol., 8 (2017) 2054, doi:10.3389/fmicb.2017.02054.
- A. Ebadi, N.A.K. Sima, M. Olamaee, M. Hashemi, R.G. Nasrabadi,
Effective bioremediation of a petroleum-polluted saline soil by
a surfactant-producing Pseudomonas aeruginosa consortium,
J. Adv. Res., 8 (2017) 627–633.
- A. Ebadi, N.A.K. Sima, M. Olamaee, M. Hashemi,
R.G. Nasrabadi, Remediation of saline soils contaminated with
crude oil using the halophyte Salicornia persica in conjunction
with hydrocarbon-degrading bacteria, J. Environ. Manage.,
219 (2018) 260–268.
- P. Parthipan, E. Preetham, L.L. Machuca, P.K.S.M. Rahman,
K. Murugan, A. Rajasekar, Biosurfactant and degradative
enzymes mediated crude oil degradation by bacterium
Bacillus subtilis A1, Front. Microbiol.,
8 (2017) 193, doi: 10.3389/fmicb.2017.00193.
- N.R. Maddela, L. Scalvenzi, K. Venkateswarlu, Microbial
degradation of total petroleum hydrocarbons in crude oil: a
field-scale study at the low-land rainforest of Ecuador, Environ.
Technol., 38 (2017) 2543–2550.
- R.L. Eklund, L.C. Knapp, P.A. Sandifer, R.C. Colwell, Oil spills
and human health: contributions of the Gulf of Mexico Research
Initiative, GeoHealth, 3 (2019) 391–406.
- G. Poi, A. Aburto-Medina, P.C. Mok, A.S. Ball, E. Shahsavari,
Large scale bioaugmentation of soil contaminated with
petroleum hydrocarbons using a mixed microbial consortium,
Ecol. Eng., 102 (2017) 64–71.