References

  1. Statista. Available at: https://www.statista.com/ (accessed September 25, 2021).
  2. Brazilian Rice. Available at: http://brazilianrice.com.br/en/ sobre-o-brasil/ (accessed March 3, 2020).
  3. C.M. Ferreira, L.P. Yokoyama, Cadeia produtiva do arroz na Região Centro-Oeste, Brasília: Embrapa Produção de Informações: ISBN 85-7437-005-3, Brasília, 1999.
  4. A. Kumar, R. Priyadarshinee, A. Roy, D. Dasgupta, T. Mandal, Current techniques in rice mill effluent treatment: emerging opportunities for waste reuse and waste-to-energy conversion, Chemosphere, 164 (2016) 404–412.
  5. M.D. Gerber, D.R. Arsand, T. Lucia Jr., E.K. Correa, Phytotoxicity evaluation of wastewater from rice parboiling, Bull. Environ. Contam. Toxicol., 101 (2018) 678–683.
  6. S.A.M. Mohammed, H.A. Shansool, Phosphorus removal from water and waste water by chemical precipitation using alum and calcium chloride, Iraqi J. Chem. Pet. Eng., 10 (2009) 35–42.
  7. R. Rodríguez-Gómez, G. Renman, Phosphorus removal from UASB reactor effluent by reactive media filtration, Environ. Technol., 38 (2017) 2024–2031.
  8. R.H. Kadlec, Large constructed wetlands for phosphorus control: a review, Water, 8 (2016) 243, doi:10.3390/w8060243.
  9. M.I. Queiroz, E.J. Lopes, L.Q. Zepka, R.G. Bastos, R. Goldbeck, The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor, Bioresour. Technol., 98 (2007) 2163–2169.
  10. M. Bahri, A. Mahdavi, A. Mirzaei, A. Mansouri, F. Haghighat, Integrated oxidation process and biological treatment for highly concentrated petrochemical effluents: a review, Chem. Eng. Process. Process Intensif., 125 (2018) 183–196.
  11. S.K. Nandy, R.K. Srivastava, A review on sustainable yeast biotechnological processes and applications, Microbiol. Res., 207 (2018) 83–90.
  12. D.G. de los Santos, C.G. Turnes, F.R. Conceição, Bioremediation of parboiled rice effluent supplemented with biodiesel-derived glycerol using Pichia pastoris X-33, Sci. World J., 2012 (2012) 492925, doi:10.1100/2012/492925.
  13. G. Gaboardi, D.G. de los Santos, L. Mendes, L. Centeno, T. Meireles, S. Vargas, E. Griep, A. de Castro Jorge Silva, A.N. Moreira, F.R. Conceição, Bioremediation and biomass production from the cultivation of probiotic Saccharomyces boulardii in parboiled rice effluent, J. Environ. Manage., 226 (2018) 180–186.
  14. G. Gaboardi, D. Alves, D.G. de los Santos, E. Xavier, A.P. Nunes, P. Finger, E. Griep, V. Roll, P. Oliveira, A. Silva,
    A. Moreira, F. Conceição, Influence of Pichia pastoris X-33 produced in industrial residues on productive performance, egg quality, immunity, and intestinal morphometry in quails, Sci. Rep., 9 (2019) 15372, doi:10.1038/s41598-019-51908-0.
  15. G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31 (1959) 426–428.
  16. E.A. Abu, S.A. Ado, D.B. James, Raw starch degrading amylase production by mixed culture of Aspergillus niger and Saccharomyces cerevisae grown on Sorghum pomace, Afr. J. Biotechnol., 4 (2005) 785–790.
  17. I. Akpan, M.O. Bankjole, A.M. Adesermowo, Production of α-amylase by Aspergillus niger in a cheap solid medium using rice bran and agricultural material, Trop. Sci., 39 (1999) 77–79.
  18. G. Rajagopalan, C. Krishnan, Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate, Bioresour. Technol., 99 (2008) 3044–3050.
  19. M. Salema-Oom, V.V. Pinto, P. Gonçalves, I. Spencer-Martins, Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the α-glucoside transporter family, Appl. Environ. Microbiol., 71 (2005) 5044–5049.
  20. S. Sayanthan, Y. Thusyanthy, Rice parboiling and effluent treatment models: a review, Int. J. Res. Stud. Agric. Sci., 4 (2018) 17–23.
  21. M.S. Hernández, M.R. Rodríguez, N.P. Guerra, R.P. Rosés, Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries, J. Food Process Eng., 73 (2006) 414–419.
  22. D. Norouzian, A. Akbarzadeh, J.M. Scharer, M.M. Young, Fungal glucoamylases, Biotechnol. Adv., 24 (2006) 80–85.
  23. J.K. Yadav, V. Prakash, Stabilization of α-amylase, the key enzyme in carbohydrates properties alterations, at low pH, Int. J. Food Prop., 14 (2011) 1182–1196.
  24. A. Halász, R. Lásztity, Use of Yeast Biomass in Food Production, CRC Press, Boca Raton, FL, 1991, 312 pp.
  25. É.D. Vieira, M. da Graça Stupiello Andrietta, S.R. Andrietta, Yeast biomass production: a new approach in glucose-limited feeding strategy, Braz. J. Microbiol., 44 (2013) 551–558.
  26. Sigma-Aldrich. Available at: https://www.sigmaaldrich.com/ (accessed January 10, 2021).
  27. Indiamart. Available at: https://www.indiamart.com/ proddetail/saccharomyces-cerevisiae-probiotics-8550947873, (accessed March 3, 2020).
  28. K. Kucharczyk, T. Tuszyński, The effect of wort aeration on fermentation, maturation and volatile components of beer produced on an industrial scale, J. Inst. Brewing, 123 (2017) 31–38.
  29. P. Fernandez-Pacheco, M. Arévalo-Villena, A. Bevilacqua, M.R. Corbo, A.B. Pérez, Probiotic characteristics in Saccharomyces cerevisiae strains: properties for application in food industries, LWT, 97 (2018) 332–340.
  30. A. Terpou, A. Papadaki, I.K. Lappa, V. Kachrimanidou, L.A. Bosnea, N. Kopsahelis, Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value, Nutrients, 11 (2019) 1–32.
  31. M.A. El-Dib, F.M. Ramadan, Characterization of starch, paperboard, and gelatin wastes, J. Water Pollut. Control Fed., 38 (1966) 46–52.
  32. Z. Rončević, J. Dodić, J. Grahovac, S. Dodić, B. Bajić, D. Vučurović, I. Tadijan, Definition of optimum basic nutrients ratio in media for bioethanol production with immobilised yeast cells, Int. J. Innovation Sustainable Dev., 11 (2017) 53–68.
  33. J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham, A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems, Front. Environ. Sci., 22 (2018) 8, doi:10.3389/ fenvs.2018.00008.
  34. C. Mukherjee, R. Chowdhury, T. Sutradhar, M. Begam, S.M. Ghosh, S.K. Basak, K. Ray, Parboiled rice effluent: a wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization, Algal Res., 19 (2016) 225–236.