References
- Statista. Available at: https://www.statista.com/ (accessed
September 25, 2021).
- Brazilian Rice. Available at: http://brazilianrice.com.br/en/
sobre-o-brasil/ (accessed March 3, 2020).
- C.M. Ferreira, L.P. Yokoyama, Cadeia produtiva do arroz
na Região Centro-Oeste, Brasília: Embrapa Produção de
Informações: ISBN 85-7437-005-3, Brasília, 1999.
- A. Kumar, R. Priyadarshinee, A. Roy, D. Dasgupta, T. Mandal,
Current techniques in rice mill effluent treatment: emerging
opportunities for waste reuse and waste-to-energy conversion,
Chemosphere, 164 (2016) 404–412.
- M.D. Gerber, D.R. Arsand, T. Lucia Jr., E.K. Correa, Phytotoxicity
evaluation of wastewater from rice parboiling, Bull. Environ.
Contam. Toxicol., 101 (2018) 678–683.
- S.A.M. Mohammed, H.A. Shansool, Phosphorus removal from
water and waste water by chemical precipitation using alum
and calcium chloride, Iraqi J. Chem. Pet. Eng., 10 (2009) 35–42.
- R. Rodríguez-Gómez, G. Renman, Phosphorus removal from
UASB reactor effluent by reactive media filtration, Environ.
Technol., 38 (2017) 2024–2031.
- R.H. Kadlec, Large constructed wetlands for phosphorus
control: a review, Water, 8 (2016) 243, doi:10.3390/w8060243.
- M.I. Queiroz, E.J. Lopes, L.Q. Zepka, R.G. Bastos, R. Goldbeck,
The kinetics of the removal of nitrogen and organic matter
from parboiled rice effluent by cyanobacteria in a stirred batch
reactor, Bioresour. Technol., 98 (2007) 2163–2169.
- M. Bahri, A. Mahdavi, A. Mirzaei, A. Mansouri, F. Haghighat,
Integrated oxidation process and biological treatment for
highly concentrated petrochemical effluents: a review, Chem.
Eng. Process. Process Intensif., 125 (2018) 183–196.
- S.K. Nandy, R.K. Srivastava, A review on sustainable yeast
biotechnological processes and applications, Microbiol. Res.,
207 (2018) 83–90.
- D.G. de los Santos, C.G. Turnes, F.R. Conceição, Bioremediation
of parboiled rice effluent supplemented with biodiesel-derived
glycerol using Pichia pastoris X-33, Sci. World J., 2012 (2012)
492925, doi:10.1100/2012/492925.
- G. Gaboardi, D.G. de los Santos, L. Mendes, L. Centeno,
T. Meireles, S. Vargas, E. Griep, A. de Castro Jorge Silva,
A.N. Moreira, F.R. Conceição, Bioremediation and biomass
production from the cultivation of probiotic Saccharomyces
boulardii in parboiled rice effluent, J. Environ. Manage.,
226 (2018) 180–186.
- G. Gaboardi, D. Alves, D.G. de los Santos, E. Xavier, A.P. Nunes,
P. Finger, E. Griep, V. Roll, P. Oliveira, A. Silva,
A. Moreira,
F. Conceição, Influence of Pichia pastoris X-33 produced in
industrial residues on productive performance, egg quality,
immunity, and intestinal morphometry in quails, Sci. Rep.,
9 (2019) 15372, doi:10.1038/s41598-019-51908-0.
- G.L. Miller, Use of dinitrosalicylic acid reagent for determination
of reducing sugar, Anal. Chem., 31 (1959) 426–428.
- E.A. Abu, S.A. Ado, D.B. James, Raw starch degrading
amylase production by mixed culture of Aspergillus niger and Saccharomyces cerevisae grown on Sorghum pomace, Afr. J.
Biotechnol., 4 (2005) 785–790.
- I. Akpan, M.O. Bankjole, A.M. Adesermowo, Production of
α-amylase by Aspergillus niger in a cheap solid medium using
rice bran and agricultural material, Trop. Sci., 39 (1999) 77–79.
- G. Rajagopalan, C. Krishnan, Alpha-amylase production
from catabolite derepressed Bacillus subtilis KCC103 utilizing
sugarcane bagasse hydrolysate, Bioresour. Technol., 99 (2008)
3044–3050.
- M. Salema-Oom, V.V. Pinto, P. Gonçalves, I. Spencer-Martins,
Maltotriose utilization by industrial Saccharomyces strains:
characterization of a new member of the α-glucoside transporter
family, Appl. Environ. Microbiol., 71 (2005) 5044–5049.
- S. Sayanthan, Y. Thusyanthy, Rice parboiling and effluent
treatment models: a review, Int. J. Res. Stud. Agric. Sci., 4 (2018)
17–23.
- M.S. Hernández, M.R. Rodríguez, N.P. Guerra, R.P. Rosés,
Amylase production by Aspergillus niger in submerged
cultivation on two wastes from food industries, J. Food Process
Eng., 73 (2006) 414–419.
- D. Norouzian, A. Akbarzadeh, J.M. Scharer, M.M. Young,
Fungal glucoamylases, Biotechnol. Adv., 24 (2006) 80–85.
- J.K. Yadav, V. Prakash, Stabilization of α-amylase, the key
enzyme in carbohydrates properties alterations, at low pH, Int.
J. Food Prop., 14 (2011) 1182–1196.
- A. Halász, R. Lásztity, Use of Yeast Biomass in Food Production,
CRC Press, Boca Raton, FL, 1991, 312 pp.
- É.D. Vieira, M. da Graça Stupiello Andrietta, S.R. Andrietta,
Yeast biomass production: a new approach in glucose-limited
feeding strategy, Braz. J. Microbiol., 44 (2013) 551–558.
- Sigma-Aldrich. Available at: https://www.sigmaaldrich.com/
(accessed January 10, 2021).
- Indiamart. Available at: https://www.indiamart.com/
proddetail/saccharomyces-cerevisiae-probiotics-8550947873,
(accessed March 3, 2020).
- K. Kucharczyk, T. Tuszyński, The effect of wort aeration on
fermentation, maturation and volatile components of beer
produced on an industrial scale, J. Inst. Brewing, 123 (2017)
31–38.
- P. Fernandez-Pacheco, M. Arévalo-Villena, A. Bevilacqua,
M.R. Corbo, A.B. Pérez, Probiotic characteristics in Saccharomyces
cerevisiae strains: properties for application in food industries,
LWT, 97 (2018) 332–340.
- A. Terpou, A. Papadaki, I.K. Lappa, V. Kachrimanidou,
L.A. Bosnea, N. Kopsahelis, Probiotics in food systems:
significance and emerging strategies towards improved
viability and delivery of enhanced beneficial value, Nutrients,
11 (2019) 1–32.
- M.A. El-Dib, F.M. Ramadan, Characterization of starch,
paperboard, and gelatin wastes, J. Water Pollut. Control Fed.,
38 (1966) 46–52.
- Z. Rončević, J. Dodić, J. Grahovac, S. Dodić, B. Bajić,
D. Vučurović, I. Tadijan, Definition of optimum basic nutrients
ratio in media for bioethanol production with immobilised
yeast cells, Int. J. Innovation Sustainable Dev., 11 (2017) 53–68.
- J.T. Bunce, E. Ndam, I.D. Ofiteru, A. Moore, D.W. Graham,
A review of phosphorus removal technologies and their
applicability to small-scale domestic wastewater treatment
systems, Front. Environ. Sci., 22 (2018) 8, doi:10.3389/
fenvs.2018.00008.
- C. Mukherjee, R. Chowdhury, T. Sutradhar, M. Begam,
S.M. Ghosh, S.K. Basak, K. Ray, Parboiled rice effluent: a
wastewater niche for microalgae and cyanobacteria with
growth coupled to comprehensive remediation and phosphorus
biofertilization, Algal Res., 19 (2016) 225–236.