References

  1. L.M. Cowardin, V. Carter, F.C. Golet, E.T. LaRoe, Classification of Wetlands and Deepwater Habitats of the United States, US Department of the Interior, US Fish and Wildlife Service, Washington DC, USA, 1979.
  2. Z. Liu, Z. Yao, R. Wang, Automatic identification of the lake area at Qinghai–Tibetan Plateau using remote sensing images, Quat. Int., 503 (2019) 136–145.
  3. R.J. Zomer, A. Trabucco, S.L. Ustin, Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing, J. Environ. Manage., 90 (2009) 2170–2177.
  4. S. Khorram, F.H. Koch, C.F. van der Wiele, S.A. Nelson, Remote Sensing, Springer Science and Business Media, New York, USA, 2012.
  5. C. Flener, E. Lotsari, P. Alho, J. Käyhkö, Comparison of empirical and theoretical remote sensing-based bathymetry models in river environments, River Res. Appl., 28 (2012) 118–133.
  6. E.C. Geyman, A.C. Maloof, A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type, Earth Space Sci., 6 (2019) 527–537.
  7. W.D. Philpot, Bathymetric mapping with passive multispectral imagery, Appl. Optics, 28 (1989) 1569–1578.
  8. V. Lafon, J.M. Froidefond, F.T. Lahet, P. Castaing, SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements, Remote Sens. Environ., 81 (2002) 136–148.
  9. J. Gao, Bathymetric mapping by means of remote sensing: methods, accuracy and limitations, Prog. Phys. Geogr., 33 (2009) 103–116.
  10. M. Amani, S. Mahdavi, O. Berard, Supervised wetland classification using high spatial resolution optical, SAR, and LiDAR imagery, J. Appl. Remote Sens., 14 (2020) 024502, doi: 10.1117/1.JRS.14.024502.
  11. J. Rogan, J. Franklin, D. Stow, J. Miller, C. Woodcock, D. Roberts, Mapping land-cover modifications over large areas: a comparison of machine learning algorithms, Remote Sens. Environ., 112 (2008) 2272–2283.
  12. G.H. Ball, D.J. Hall, ISODATA, A Novel Method of Data Analysis and Pattern Classification, Stanford Research Institute, Menlo Park CA, 1965.
  13. Y. Zhong, L. Zhang, B. Huang, P. Li, An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery, IEEE Trans. Geosci. Remote Sens., 44 (2006) 420–431.
  14. A.W. Abbas, N. Minallh, N. Ahmad, S.A.R. Abid, M.A.A. Khan, K-Means and ISODATA clustering algorithms for landcover classification using remote sensing, Sindh Univ. Res. J.-SURJ (Science Series), 48 (2016) 315–318.
  15. M.V. Herbei, F. Sala, M. Boldea, Using mathematical algorithms for classification of LANDSAT 8 satellite images, AIP Conf. Proc., 1648 (2015) 670004, doi: 10.1063/1.4912899.
  16. G. Camps-Valls, Machine Learning in Remote Sensing Data Processing, 2009 IEEE International Workshop on Machine Learning for Signal Processing, IEEE, Grenoble, France, 2009, pp. 1–6.
  17. S. Tian, X. Zhang, J. Tian, Q. Sun, Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China, Remote Sens., 8 (2016) 954, doi: 10.3390/rs8110954.
  18. M. Amani, B. Salehi, S. Mahdavi, J.E. Granger, B. Brisco, A. Hanson, Wetland classification using multi-source and multi-temporal optical remote sensing data in Newfoundland and Labrador, Canada, Can. J. Remote Sens., 43 (2017) 360–373.
  19. N. Yagmur, N. Musaoglu, G. Taskin, Detection of Shallow Water Area with Machine Learning Algorithms, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands, 2019, pp. 1269–1273.
  20. N. Wagle, T.D. Acharya, V. Kolluru, H. Huang, D.H. Lee, Multitemporal land cover change mapping using google earth engine and ensemble learning methods, Appl. Sci., 10 (2020) 8083, doi: 10.3390/app10228083.
  21. T. Kiss, G. Sipos, Braid-scale channel geometry changes in a sand-bedded river: significance of low stages, Geomorphology, 84 (2007) 209–221.
  22. J. Gao, Bathymetric mapping by means of remote sensing: methods, accuracy, and limitations, Prog. Phys. Geogr., 33 (2009) 103–116.
  23. S.D. Jawak, S.S.M. Vadlamani, A.J. Luis, A synoptic review on deriving bathymetry information using remote sensing technologies: models, methods and comparisons, Adv. Remote Sens., 4 (2015) 147–162.
  24. T. Lillesand, W. Ralph, R.W. Kiefer, J. Jonathan Chipman, Remote Sensing and Image Interpretation, 7th ed., Wiley, New York, USA, 2015.
  25. J.M. Kerr, S. Purkis, An algorithm for optically-deriving water depth from multispectral imagery in coral reef landscapes in the absence of ground-truth data, Remote Sens. Environ., 210 (2018) 307–324.
  26. B. Ai, Z. Wen, Z. Wang, R. Wang, D. Su, C. Li, F. Yang, Convolutional neural network to retrieve water depth in marine shallow water area from remote sensing images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13 (2020) 2888–2898.
  27. https://tvk.csb.gov.tr/konya-kulu-duden-golu-tescil-ilaniduyuru- 406332
  28. https://www.hurriyet.com.tr/gundem/180-kus-turune-evsahipligi- yapan-duden-golu-kurumaya-yuz-tuttu-41503568
  29. https://anadoludabugun.com.tr/konya-haber/duden-golununsu- seviyesindeki-dusus-tedirgin-ediyor-137559h
  30. http://www.kop.gov.tr/pdf/KOP_Bolgesi_su-alanlar-raporu. pdf
  31. https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
  32. D.R. Lyzenga, Passive remote sensing techniques for mapping water depth and bottom features, Appl. Optics, 17 (1998) 379–383.
  33. C.D. Mobley, Light and Water: Radiative Transfer in Natural Waters, Academic Press, San Diego, 1994.
  34. L. Hubert-Moy, A. Cotonnec, L. Le Du, A. Chardin, P. Perez, A comparison of parametric classification procedures of remotely sensed data applied on different landscape units, Remote Sens. Environ., 75 (2001) 174–187.
  35. D.A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, John Wiley and Sons, New Jersey, USA, 2003.
  36. P.M. Mather, M. Koch, Computer Processing of Remotely- Sensed Images: An Introduction, 3rd ed., John Wiley and Sons, New Jersey, USA, 2011.
  37. M. Belgiu, L. Drăguţ, Random forest in remote sensing: a review of applications and future directions, ISPRS ISPRS J. Photogramm. Remote Sens., 114 (2016) 24–31.
  38. T.V. Bijeesh, K.N. Narasimhamurthy, Surface water detection and delineation using remote sensing images: a review of methods and algorithms, Sustainable Water Res. Manage., 6 (2020) 1–23.
  39. M.D.M. Manessa, A. Kanno, M. Sekine, M. Haidar, K. Yamamoto, T. Imai, T. Higuchi, Satellite-derived bathymetry using random forest algorithm and worldview-2 imagery, Geoplanning J. Geomatics Plann., 3 (2016) 117–126.
  40. J.R. Otukei, T. Blaschke, Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms, Int. J. Appl. Earth Obs. Geoinf., 12 (2010) 27–31.
  41. X. Jiang, M. Lin, J. Zhao, Woodland Cover Change Assessment Using Decision Trees, Support Vector Machines and Artificial Neural Networks Classification Algorithms, 2011 Fourth International Conference on Intelligent Computation Technology and Automation, IEEE, 2011, pp. 312–315.
  42. J.A. Richards, Remote Sensing Digital Image Analysis, Springer- Verlag, Berlin, 1999.
  43. C.D. Schuman, J.D. Birdwell, Dynamic artificial neural networks with affective systems, PLoS One, 8 (2013) e80455, doi: 10.1371/ journal.pone.0080455.
  44. J.D. Paola, R.A. Schowengerdt, A detailed comparison of backpropagation neural network and maximum likelihood classifiers for urban land use classification, IEEE Trans. Geosci. Remote Sens., 33 (1995) 981–996.
  45. G.M. Foody, Status of land cover classification accuracy assessment, Remote Sens. Environ., 80 (2002) 185–201.
  46. D. Lu, Q. Weng, A survey of image classification methods and techniques for improving classification performance, Int. J. Remote Sens., 28 (2007) 823–870.
  47. R.G. Congalton, Accuracy assessment and validation of remotely sensed and other spatial information, Int. J. Wildland Fire, 10 (2001) 321–328.
  48. G.H. Rosenfield, K. Fitzpatrick-Lins, A coefficient of agreement as a measure of thematic classification accuracy, Photogramm. Eng. Remote Sens., 52 (1986) 223–227.
  49. Y. Qian, W. Zhou, J. Yan, W. Li, L. Han, Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery, Remote Sens., 7 (2014) 153–168.
  50. C. Huang, L.S. Davis, J.R.G. Townshend, An assessment of support vector machines for land cover classification, Int. J. Remote Sens., 23 (2002) 725–749.
  51. S.K. McFeeters, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17 (1996) 1425–1432.