References
- L.M. Cowardin, V. Carter, F.C. Golet, E.T. LaRoe, Classification
of Wetlands and Deepwater Habitats of the United States,
US Department of the Interior, US Fish and Wildlife Service,
Washington DC, USA, 1979.
- Z. Liu, Z. Yao, R. Wang, Automatic identification of the lake
area at Qinghai–Tibetan Plateau using remote sensing images,
Quat. Int., 503 (2019) 136–145.
- R.J. Zomer, A. Trabucco, S.L. Ustin, Building spectral libraries
for wetlands land cover classification and hyperspectral remote
sensing, J. Environ. Manage., 90 (2009) 2170–2177.
- S. Khorram, F.H. Koch, C.F. van der Wiele, S.A. Nelson, Remote
Sensing, Springer Science and Business Media, New York, USA,
2012.
- C. Flener, E. Lotsari, P. Alho, J. Käyhkö, Comparison of empirical
and theoretical remote sensing-based bathymetry models in
river environments, River Res. Appl., 28 (2012) 118–133.
- E.C. Geyman, A.C. Maloof, A simple method for extracting
water depth from multispectral satellite imagery in regions of
variable bottom type, Earth Space Sci., 6 (2019) 527–537.
- W.D. Philpot, Bathymetric mapping with passive multispectral
imagery, Appl. Optics, 28 (1989) 1569–1578.
- V. Lafon, J.M. Froidefond, F.T. Lahet, P. Castaing, SPOT shallow
water bathymetry of a moderately turbid tidal inlet based on
field measurements, Remote Sens. Environ., 81 (2002) 136–148.
- J. Gao, Bathymetric mapping by means of remote sensing: methods,
accuracy and limitations, Prog. Phys. Geogr., 33 (2009) 103–116.
- M. Amani, S. Mahdavi, O. Berard, Supervised wetland
classification using high spatial resolution optical, SAR, and
LiDAR imagery, J. Appl. Remote Sens., 14 (2020) 024502,
doi: 10.1117/1.JRS.14.024502.
- J. Rogan, J. Franklin, D. Stow, J. Miller, C. Woodcock,
D. Roberts, Mapping land-cover modifications over large areas:
a comparison of machine learning algorithms, Remote Sens.
Environ., 112 (2008) 2272–2283.
- G.H. Ball, D.J. Hall, ISODATA, A Novel Method of Data
Analysis and Pattern Classification, Stanford Research Institute,
Menlo Park CA, 1965.
- Y. Zhong, L. Zhang, B. Huang, P. Li, An unsupervised artificial
immune classifier for multi/hyperspectral remote sensing
imagery, IEEE Trans. Geosci. Remote Sens., 44 (2006) 420–431.
- A.W. Abbas, N. Minallh, N. Ahmad, S.A.R. Abid, M.A.A. Khan,
K-Means and ISODATA clustering algorithms for landcover
classification using remote sensing, Sindh Univ. Res. J.-SURJ
(Science Series), 48 (2016) 315–318.
- M.V. Herbei, F. Sala, M. Boldea, Using mathematical algorithms
for classification of LANDSAT 8 satellite images, AIP Conf.
Proc., 1648 (2015) 670004, doi: 10.1063/1.4912899.
- G. Camps-Valls, Machine Learning in Remote Sensing Data
Processing, 2009 IEEE International Workshop on Machine
Learning for Signal Processing, IEEE, Grenoble, France, 2009,
pp. 1–6.
- S. Tian, X. Zhang, J. Tian, Q. Sun, Random forest classification
of wetland landcovers from multi-sensor data in the arid region
of Xinjiang, China, Remote Sens., 8 (2016) 954, doi: 10.3390/rs8110954.
- M. Amani, B. Salehi, S. Mahdavi, J.E. Granger, B. Brisco,
A. Hanson, Wetland classification using multi-source and
multi-temporal optical remote sensing data in Newfoundland
and Labrador, Canada, Can. J. Remote Sens., 43 (2017) 360–373.
- N. Yagmur, N. Musaoglu, G. Taskin, Detection of Shallow
Water Area with Machine Learning Algorithms, The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The
Netherlands, 2019, pp. 1269–1273.
- N. Wagle, T.D. Acharya, V. Kolluru, H. Huang, D.H. Lee, Multitemporal
land cover change mapping using google earth engine
and ensemble learning methods, Appl. Sci., 10 (2020) 8083,
doi: 10.3390/app10228083.
- T. Kiss, G. Sipos, Braid-scale channel geometry changes in a
sand-bedded river: significance of low stages, Geomorphology,
84 (2007) 209–221.
- J. Gao, Bathymetric mapping by means of remote sensing:
methods, accuracy, and limitations, Prog. Phys. Geogr.,
33 (2009) 103–116.
- S.D. Jawak, S.S.M. Vadlamani, A.J. Luis, A synoptic review
on deriving bathymetry information using remote sensing
technologies: models, methods and comparisons, Adv. Remote
Sens., 4 (2015) 147–162.
- T. Lillesand, W. Ralph, R.W. Kiefer, J. Jonathan Chipman,
Remote Sensing and Image Interpretation, 7th ed., Wiley,
New York, USA, 2015.
- J.M. Kerr, S. Purkis, An algorithm for optically-deriving water
depth from multispectral imagery in coral reef landscapes in
the absence of ground-truth data, Remote Sens. Environ.,
210 (2018) 307–324.
- B. Ai, Z. Wen, Z. Wang, R. Wang, D. Su, C. Li, F. Yang,
Convolutional neural network to retrieve water depth in marine
shallow water area from remote sensing images, IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens., 13 (2020) 2888–2898.
- https://tvk.csb.gov.tr/konya-kulu-duden-golu-tescil-ilaniduyuru-
406332
- https://www.hurriyet.com.tr/gundem/180-kus-turune-evsahipligi-
yapan-duden-golu-kurumaya-yuz-tuttu-41503568
- https://anadoludabugun.com.tr/konya-haber/duden-golununsu-
seviyesindeki-dusus-tedirgin-ediyor-137559h
- http://www.kop.gov.tr/pdf/KOP_Bolgesi_su-alanlar-raporu.
pdf
- https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
- D.R. Lyzenga, Passive remote sensing techniques for mapping
water depth and bottom features, Appl. Optics, 17 (1998)
379–383.
- C.D. Mobley, Light and Water: Radiative Transfer in Natural
Waters, Academic Press, San Diego, 1994.
- L. Hubert-Moy, A. Cotonnec, L. Le Du, A. Chardin, P. Perez,
A comparison of parametric classification procedures of
remotely sensed data applied on different landscape units,
Remote Sens. Environ., 75 (2001) 174–187.
- D.A. Landgrebe, Signal Theory Methods in Multispectral
Remote Sensing, John Wiley and Sons, New Jersey, USA, 2003.
- P.M. Mather, M. Koch, Computer Processing of Remotely-
Sensed Images: An Introduction, 3rd ed., John Wiley and Sons,
New Jersey, USA, 2011.
- M. Belgiu, L. Drăguţ, Random forest in remote sensing: a
review of applications and future directions, ISPRS ISPRS J.
Photogramm. Remote Sens., 114 (2016) 24–31.
- T.V. Bijeesh, K.N. Narasimhamurthy, Surface water detection
and delineation using remote sensing images: a review of
methods and algorithms, Sustainable Water Res. Manage.,
6 (2020) 1–23.
- M.D.M. Manessa, A. Kanno, M. Sekine, M. Haidar, K. Yamamoto,
T. Imai, T. Higuchi, Satellite-derived bathymetry using random
forest algorithm and worldview-2 imagery, Geoplanning J.
Geomatics Plann., 3 (2016) 117–126.
- J.R. Otukei, T. Blaschke, Land cover change assessment
using decision trees, support vector machines and maximum
likelihood classification algorithms, Int. J. Appl. Earth Obs.
Geoinf., 12 (2010) 27–31.
- X. Jiang, M. Lin, J. Zhao, Woodland Cover Change Assessment
Using Decision Trees, Support Vector Machines and Artificial
Neural Networks Classification Algorithms, 2011 Fourth
International Conference on Intelligent Computation Technology
and Automation, IEEE, 2011, pp. 312–315.
- J.A. Richards, Remote Sensing Digital Image Analysis, Springer-
Verlag, Berlin, 1999.
- C.D. Schuman, J.D. Birdwell, Dynamic artificial neural networks
with affective systems, PLoS One, 8 (2013) e80455, doi: 10.1371/
journal.pone.0080455.
- J.D. Paola, R.A. Schowengerdt, A detailed comparison of
backpropagation neural network and maximum likelihood
classifiers for urban land use classification, IEEE Trans. Geosci.
Remote Sens., 33 (1995) 981–996.
- G.M. Foody, Status of land cover classification accuracy
assessment, Remote Sens. Environ., 80 (2002) 185–201.
- D. Lu, Q. Weng, A survey of image classification methods and
techniques for improving classification performance, Int. J.
Remote Sens., 28 (2007) 823–870.
- R.G. Congalton, Accuracy assessment and validation of
remotely sensed and other spatial information, Int. J. Wildland
Fire, 10 (2001) 321–328.
- G.H. Rosenfield, K. Fitzpatrick-Lins, A coefficient of agreement
as a measure of thematic classification accuracy, Photogramm.
Eng. Remote Sens., 52 (1986) 223–227.
- Y. Qian, W. Zhou, J. Yan, W. Li, L. Han, Comparing machine
learning classifiers for object-based land cover classification
using very high resolution imagery, Remote Sens., 7 (2014)
153–168.
- C. Huang, L.S. Davis, J.R.G. Townshend, An assessment of
support vector machines for land cover classification, Int. J.
Remote Sens., 23 (2002) 725–749.
- S.K. McFeeters, The use of the Normalized Difference Water
Index (NDWI) in the delineation of open water features, Int. J.
Remote Sens., 17 (1996) 1425–1432.