References

  1. W. Li, B. Mu, Y. Yang, Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology, Bioresour. Technol., 277 (2019) 157–170.
  2. C. Wang, J. Yin, R. Wang, T. Jiao, H. Huang, J. Zhou, L. Zhang, Q. Peng, Facile preparation of self-assembled polydopaminemodified electrospun fibers for highly effective removal of organic dyes, Nanomaterials-Basel, 9 (2019) 116, doi: 10.3390/nano9010116.
  3. M. Ghaedi, A.M. Ghaedi, B. Mirtamizdoust, S. Agarwal, V.K. Gupta, Simple and facile sonochemical synthesis of lead oxide nanoparticles loaded activated carbon and its application for methyl orange removal from aqueous phase, J. Mol. Liq., 213 (2016) 48–57.
  4. H. Wang, Q. Wang, X. Li, Y. Wang, P. Jin, Y. Zheng, J. Huang, Q. Li, Bioelectricity generation from the decolorization of Reactive blue 19 by using microbial fuel cell, J. Environ. Manage., 248 (2019) 109310, doi:10.1016/j.jenvman.2019. 109310.
  5. J. Pierce, Colour in textile effluents‐the origins of the problem, J. Soc. Dyers Colour., 110 (1994) 131–133.
  6. Y.-Q. Liu, N. Maulidiany, P. Zeng, S. Heo, Decolourization of azo, anthraquinone and triphenylmethane dyes using aerobic granules: acclimatization and long-term stability, Chemosphere, 263 (2021) 128312, doi:10.1016/j.chemosphere.2020.128312
  7. M. Svetozarević, N. Šekuljica, Z. Knežević-Jugović, D. Mijin, Agricultural waste as a source of peroxidase for wastewater treatment: insight in kinetics and process parameters optimization for anthraquinone dye removal, Environ. Technol. Innovation, 21 (2021) 101289, doi: 10.1016/j.eti.2020.101289.
  8. A. Khataee, P. Gholami, B. Vahid, S.W. Joo, Heterogeneous sono-Fenton process using pyrite nanorods prepared by nonthermal plasma for degradation of an anthraquinone dye, Ultrason. Sonochem., 2 (2016) 357–370.
  9. E. Routoula, S.V. Patwardhan, Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential, Environ. Sci. Technol., 54 (2020) 647–664.
  10. J. Lach, E. Okoniewska, L. Stępniak, A. Ociepa-Kubicka, The influence of modification of activated carbon on adsorption of Ni(II) and Cd(II), Desal. Water. Treat., 52 (2014) 3979–3986.
  11. E.N. Zare, A. Mudhoo, M.A. Khan, M. Otero, Z.M.A. Bundhoo, C. Navarathna, M. Patel, A. Srivastava, C.U. Pittman Jr., T. Mlsna, D. Mohan, P. Makvandi, M. Sillanpää, Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents: review, Environ. Chem. Lett., 19 (2021) 3075–3114.
  12. M.J. Kampschreur, H. Temmink, R. Kleerebezem, M.S.M. Jetten, M.C.M. Van Loosdrecht, Nitrous oxide emission during wastewater treatment, Water Res., 43 (2009) 4093–4103.
  13. E. Gagliano, M. Sgroi, P.P. Falciglia, F.G.A. Vagliasindi, P. Roccaro, Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration, Water Res., 171 (2020) 115381, doi: 10.1016/j.watres.2019.115381.
  14. G. Qu, J. Li, Y. Wu, G. Li, D. Li, Regeneration of acid orange 7-exhausted granular activated carbon with dielectric barrier discharge plasma, Chem. Eng. J., 146 (2009) 168–173.
  15. M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Sustainable Energy Rev., 46 (2015) 218–235.
  16. A. Jain, R. Balasubramanian, M.P. Srinivasan, Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review, Chem. Eng. J., 283 (2016) 789–805.
  17. S.A. Alshareef, M. Otero, H.S. Alanazi, M.R. Siddiqui, M.A. Khana, Z.A. Alothman, Upcycling olive oil cake through wet torrefaction to produce hydrochar for water decontamination, Chem. Eng. Res. Des., 170 (2021) 13–22.
  18. E. Sabio, E. González, J.F. González, C.M. González-Garcı́a, A. Ramiro, J. Gañan, Thermal regeneration of activated carbon saturated with p-nitrophenol, Carbon, 42 (2004) 2285–2293.
  19. P.P. Falciglia, P. Roccaro, L. Bonanno, G. De Guidi, F.G.A. Vagliasindi, S. Romano, A review on the microwave heating as a sustainable technique for environmental remediation/detoxification applications, Renewable Sustainable Energy Rev., 95 (2018) 147–170.
  20. G. Durán-Jiménez, L.A. Stevens, G.R. Hodgins, J. Uguna, J. Ryan, E.R. Binner, J.P. Robinson, Fast regeneration of activated carbons saturated with textile dyes: textural, thermal and dielectric characterization, Chem. Eng. J., 378 (2019) 121774, doi: 10.1016/j.cej.2019.05.135.
  21. H. Mao, D. Zhou, Z. Hashisho, S. Wang, H. Chen, H. Wang, Constant power and constant temperature microwave regeneration of toluene and acetone loaded on microporous activated carbon from agricultural residue, J. Ind. Eng. Chem., 21 (2015) 516–525.
  22. P.P. Falciglia, E. Gagliano, V. Brancato, G. Malandrino, G. Finocchiaro, A. Catalfo, G. De Guidi, S. Romano, P. Roccaro, F.G.A. Vagliasindi, Microwave based regenerating permeable reactive barriers (MW-PRBs): proof of concept and application for Cs removal, Chemosphere, 251 (2020) 126582, doi:10.1016/j.chemosphere.2020.126582
  23. R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of Malachite green on groundnut shell waste based powdered activated carbon, Waste Manage., 27 (2007) 1129–1138.
  24. E. Gagliano, P.P. Falciglia, Y. Zaker, T. Karanfil, P. Roccaro, Microwave regeneration of granular activated carbon saturated with PFAS, Water Res., 198 (2021) 117121, doi: 10.1016/j. watres.2021.117121.
  25. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Optimization of the ultrasonic assisted removal of Methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology, Ultrason. Sonochem., 21 (2014) 242–252.
  26. S.M. Wabaidur, M.A. Khan, M.R. Siddiqui, M. Otero, B.-H. Jeon, Z.A. Alothman, A.A.H. Hakami, Oxygenated functionalities enriched MWCNTs decorated with silica coated spinel ferrite – a nanocomposite for potentially rapid and efficient de-colorization of aquatic environment, J. Mol. Liq., 317 (2020) 113916, doi:10.1016/j.molliq.2020.113916.
  27. H. Sayğılı, F. Güzel, Performance of new mesoporous carbon sorbent prepared from grape industrial processing wastes for Malachite green and congo red removal, Chem. Eng. Res. Des., 100 (2015) 27–38.
  28. R. Ahmad, R. Kumar, Adsorptive removal of Congo red dye from aqueous solution using bael shell carbon, Appl. Surf. Sci., 257 (2010) 1628–1633.
  29. G. Lin, L. Zhang, S. Yin, J. Peng, S. Li, F. Xie, Study on the calcination experiments of rare earth carbonates using microwave heating, Green Process. Synth., 4 (2015) 329–336.
  30. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  31. K.Y. Foo, B.H. Hameed, Microwave-assisted regeneration of activated carbon, Bioresour. Technol., 119 (2012) 234–240.
  32. S. Cheng, Q. Chen, H. Xia, L. Zhang, J. Peng, G. Lin, X. Liao, X. Jiang, Q. Zhang, Microwave one-pot production of ZnO/Fe3O4/activated carbon composite for organic dye removal and the pyrolysis exhaust recycle,
    J. Cleaner Prod., 188 (2018) 900–910.
  33. N. Solovitch, J. Labille, J. Rose, P. Chaurand, D. Borschneck, M.R. Wiesner, J.Y. Bottero, Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media, Environ. Sci. Technol., 44 (2010) 4897–4902.
  34. M.A. Beckett, P.N. Horton, M.B. Hursthouse, D.A. Knox, J.L. Timmis, Structural (XRD) and thermal (DSC TGA) and BET analysis of materials derived from non-metal cation pentaborate salts, Dalton Trans., 39 (2010) 3944–3951.
  35. R.K. Agarwal, J.A. Schwarz, Analysis of high pressure adsorption of gases on activated carbon by potential theory, Carbon, 26 (1988) 873–887.
  36. I.A.W. Tan, B.H. Hameed, A.L. Ahmad, Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon, Chem. Eng. J., 127 (2007) 111–119.
  37. M. Manes, L.J.E. Hofer, Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon, J. Phys. Chem., 73 (1969) 584–590.
  38. M.A. Daley, D. Tandon, J. Economy, E.J. Hippo, Elucidating the porous structure of activated carbon fibers using direct and indirect methods, Carbon, 34 (1996) 1191–1200.
  39. P.J.F. Harris, Z. Liu, K. Suenaga, Imaging the atomic structure of activated carbon, J. Phys.: Condens. Matter, 20 (2008) 362–201.
  40. A. Foelske-Schmitz, D. Weingarth, R. Kötz, XPS analysis of activated carbon supported ionic liquids: enhanced purity and reduced charging, Surf. Sci., 605 (2011) 1979–1985.
  41. J. Yu, Z. Meng, C. Chi, X. Gao, K. Qiao, Low temperature pickling regeneration process for remarkable enhancement in Cu(II) adsorptivity over spent activated carbon fiber, Chemosphere, 281 (2021) 130868, doi:10.1016/j.chemosphere.2021.130868.
  42. R. Liang, Z. Jian, L. Ye, C. Zhang, Preparation and evaluation of cattail fiber-based activated carbon for
    2,4-dichlorophenol and 2,4,6-trichlorophenol removal, Chem. Eng. J., 168 (2011) 553–561.
  43. E. Taer, M. Deraman, I.A. Talib, Awitdrus, R. Farma, M.M. Ishak, R. Omar, B.N.M. Dolah, N.H. Basri, M.A.R. Othman, S. Kanwal, Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications, AIP Conf. Proc., 1656 (2015) 030004, doi: 10.1063/1.4917093.
  44. G. Fu, Z. Li, Measurement and analysis of methane adsorption isotherms on activated carbon, Nat. Gas Ind. B, 24 (2004) 92–94.
  45. E.G. Furuya, H.T. Chang, Y. Miura, K.E. Noll, A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon, Sep. Purif. Technol., 11 (1997) 69–78.
  46. S. Dawood, T. Kanti Sen, Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design, Water Res., 46 (2012) 1933–1946.
  47. J.S. Cao, J.X. Lin, F. Fang, M.T. Zhang, Z.R. Hu. A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies, Bioresour. Technol., 163 (2014) 199–205.
  48. D.P. Li, Y.R. Zhang, X.X. Zhao, B.X. Zhao, Magnetic nanoparticles coated by aminoguanidine for selective adsorption of acid dyes from aqueous solution, Chem. Eng. J., 232 (2013) 425–433.
  49. M.A. Khan, S.M. Wabaidur, M.R. Siddiqui, A.A. Alqadami, A.H. Khan, Silico-manganese fumes waste encapsulated cryogenic alginate beads for aqueous environment de-colorization, J. Cleaner Prod., 244 (2020) 118867, doi: 10.1016/j.jclepro.2019.118867.
  50. S. Cheng, L. Zhang, H. Xia, J.H. Peng, C. Li, Ultrasound and microwave-assisted preparation of Fe-activated carbon as an effective low-cost adsorbent for dyes wastewater treatment, RSC Adv., 6 (2016) 82, doi:10.1039/C6RA14082C.
  51. N. Kannan, M. Meenakshisundaram, Adsorption of Congo red on various activated carbons a comparative, study, Water Air Soil Pollut., 138 (2002) 289–305.
  52. S.L. Chan, Y.P. Tan, A.H. Abdullah, S.T. Ong, Equilibrium kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic Blue 3 and Congo red dyes: pineapple (Ananas comosus) plant stem, J. Taiwan Inst. Chem. Eng., 61 (2016) 306–315.
  53. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  54. Z. Liu, Y. Sun, X. Xu, X. Meng, J. Qu, Z. Wang, C. Liu, B. Qu, Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg(II) from aqueous solution, Bioresour. Technol., 306 (2020) 123154.
  55. E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm, Chem. Eng. J., 124 (2006) 103–110.