References

  1. F. Lu, D. Astruc, Nanocatalysts and other nanomaterials for water remediation from organic pollutants, Coord. Chem. Rev., 408 (2020) 213180, doi: 10.1016/j.ccr.2020.213180.
  2. R. Molinari, A. Caruso, L. Palmisano, Photocatalytic Processes in Membrane Reactors, E. Drioli, L. Giorno, E. Fontananova, Eds., Comprehensive Membrane Science and Engineering, 2nd ed., Vol. 3, Elsevier, Oxford, 2017, pp. 101–138.
  3. P. Anil Kumar Reddy, P. Venkata Laxma Reddy, E. Kwon, K.-H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91 (2016) 94–103.
  4. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  5. E. Friehs, Y. AlSalka, R. Jonczyk, A. Lavrentieva, A. Jochums, J.-G. Walter, F. Stahl, T. Scheper, D. Bahnemann, Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis, J. Photochem. Photobiol., C, 29 (2016) 1–28.
  6. A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault, H. Kochkar, Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms, Appl. Catal., B, 163 (2015) 404–414.
  7. F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M.L. Curri, A. Agostiano, R. Comparelli, Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281 (2016) 85–100.
  8. M. Bodzek, M. Rajca, Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds, Ecol. Chem. Eng. S, 19 (2012) 489–512.
  9. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology:
    a review, Water Res., 44 (2010) 2997–3027.
  10. O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D. Yogi Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal., B, 98 (2010) 27–38.
  11. T. Bora, J. Dutta, Applications of nanotechnology in wastewater treatment—a review, J. Nanosci. Nanotechnol., 14 (2014) 613–626.
  12. T. Kasza, Badanie właściwości fotokatalitycznych i charakterystyka fizykochemiczna nanokrystalicznych filmów TiO2 na podłożu ceramicznym, Ph.D. Thesis, Politechnika Krakowska, Kraków, 2007 (in Polish).
  13. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne,
    K. O’shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  14. S. Malato, J. Blanco, D.C. Alarcón, M.I. Maldonado, P. Fernández-Ibáñez, W. Gernjak, Photocatalytic decontamination and disinfection of water with solar collectors, Catal. Today, 122 (2007) 137–149.
  15. C. Byrne, G. Subramanian, C. Pillai Suresh, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng., 6 (2018) 3531–3555.
  16. P. Ganguly, C. Byrnea, G. Subramanianc, C. Pillai Suresh, Recent advances in photocatalysis for environmental applications, Appl. Catal., B, 225 (2018) 51–75.
  17. J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol., 44 (2010) 6849–6854.
  18. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir, 29 (2013) 3097–3105.
  19. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation, Chem. Commun., 48 (2012) 2858–2860.
  20. Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphitelike C3N4, Energy Environ. Sci., 4 (2011) 2922–2929.
  21. C. Wu, L. Shen, Y.-C. Zhang, Q. Huang, Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett., 65 (2011) 1794–1796.
  22. W. Xie, Y. Li, W. Sun, J.C. Huang, H. Xie, X. Zhao, Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability, J. Photochem. Photobiol., A, 216 (2010) 149–155.
  23. L.-Y. Yang, S.Y. Dong, J.-H. Sun, J.-L. Feng, Q.-H. Wu, S.-P. Sun, Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst, J. Hazard. Mater., 179 (2010) 438–443.
  24. S.C. Sharma, ZnO nano-flowers from Carica papaya milk: degradation of Alizarin Red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, Optik – Int. J. Light Electron Optics, 127 (2016) 6498–6512.
  25. A. Zyoud, M. Dwikat, S. Al-Shakhshir, S. Ateeq, J. Shteiwi, A. Zu’bi, M.H.S. Helal, G. Campet, D.H. Park, H. Kwon, T.W. Kim, M. Kharoof, R. Shawahna, H.S. Hilal, Natural dyesensitized ZnO nano-particles as photo-catalysts in complete degradation of Escherichia coli bacteria and their organic content, J. Photochem. Photobiol., A, 328 (2016) 207–216.
  26. M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Remediation of wastewater using various nano-materials, Arabian J. Chem., 12 (2019) 4897–4919.
  27. T. Pradeep, Anshup, Noble metal nanoparticles for water purification: a critical review, Thin Solid Films, 517 (2009) 6441–6478.
  28. Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan, Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3–4 (2016) 22–39.
  29. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic
    water-splitting using TiO2 for hydrogen production, Renewable Sustainable Energy Rev., 11 (2007) 401–425.
  30. A. Zielińska-Jurek, Z. Wei, I. Wysocka, P. Szweda, E. Kowalska, The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts, Appl. Surf. Sci., 353 (2015) 317–325.
  31. O.A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3 (2013) 189–218.
  32. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater., 10 (2011) 911–921.
  33. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol., C, 25 (2015) 1–29.
  34. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, N-doped TiO2: theory and experiment, Chem. Phys., 339 (2007) 44–56.
  35. T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishi, S. Ito, A patterned TiO2(Anatase)/TiO2(Rutile) bilayer-type photocatalyst: effect of the Anatase/Rutile junction on the photocatalytic activity, Angew. Chem. Int. Ed., 41 (2002) 2811–2813.
  36. V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Highly visible light active TiO2–xNx heterojunction photocatalysts, Chem. Mater., 22 (2010) 3843–3853.
  37. G.-S. Li, D.-Q. Zhang, J.C. Yu, A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2, Environ. Sci. Technol., 43 (2009) 7079–7085.
  38. H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, G. Zeng, Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation,
    J. Hazard. Mater., 169 (2009) 933–940.
  39. P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Synthesis of CuO-ZnO nano-photocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chem. Eng. J., 171 (2011) 136–140.
  40. V. Eskizeybek, F. Sari, H. Gulce, A. Gulce, A. Avci, Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations, Appl. Catal., B, 119 (2012) 197–206.
  41. A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review, Appl. Catal., A, 389 (2010) 1–8.
  42. R. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam, J. Kim, Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications, J. Environ. Chem. Eng., 4 (2016) 4143–4164.
  43. R.M. Cámara, R. Portela, F. Gutiérrez-Martín, B. Sánchez, Photocatalytic activity of TiO2 films prepared by surfactantmediated sol–gel methods over commercial polymer substrates, Chem. Eng. J., 283 (2016) 535–543.
  44. L. Sun, Z. Zhao, Y. Zhou, L. Liu, Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity, Nanoscale, 4 (2012) 613–620.
  45. Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, C. Xie, Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond, ACS Catal., 3 (2013) 1477–1485.
  46. L.M. Pastrana-Martínez, S. Morales-Torres, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water, Water Res., 77 (2015) 179–190.
  47. W. Li, Y. Zhang, G. Tian, S. Xie, Q. Xu, L. Wang, J. Tian, Y. Bu, Fabrication of graphene-modified nano-sized red phosphorus for enhanced photocatalytic performance, J. Mol. Catal. A: Chem., 423 (2016) 356–364.
  48. T.T. Lim, P.S. Yap, M. Srinivasan, A.G. Fane, TiO2/AC composites for synergistic adsorption-photocatalysis processes: present challenges and further developments for water treatment and reclamation, Crit. Rev. Env. Sci. Technol., 41 (2011) 1173–1230.
  49. P.S. Yap, T.T. Lim, M. Lim, M. Srinivasan, Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption–photocatalytic degradation of aqueous bisphenol—a using solar light, Catal. Today, 151 (2010) 8–13.
  50. B. Gao, P.S. Yap, T.M. Lim, T.T. Lim, Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO2: effect of activated carbon support and aqueous anions, Chem. Eng. J., 171 (2011) 1098–1107.
  51. S.S. Dong, J.B. Zhang, L.L. Gao, Y.L. Wang, D.-D. Zhou, Preparation of spherical activated carbon-supported and Er3+: YAlO3– doped TiO2 photocatalyst for methyl orange degradation under visible light, Trans. Nonferrous Met. Soc. China, 22 (2012) 2477–2483.
  52. J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P. Alvarez, M. Alvim-Ferraz, J. Dias, Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 187 (2011) 1–23.
  53. X. Fu, H. Yang, G. Lu, Y. Tu, J. Wu, Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution, Mater. Sci. Semicond. Process., 39 (2015) 362–370.
  54. A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su, A.A. Keller, Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability, Chem. Eng. J., 286 (2016) 640–662.
  55. S.T. Lin, M. Thirumavalavan, T.Y. Jiang, J.F. Lee, Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes, Carbohydr. Polym., 105 (2014) 1–9.
  56. S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.
  57. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
  58. M. Bodzek, Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Arch. Environ. Prot., 45 4 (2019) 4–19.
  59. M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Photochemical decomposition of endocrine disrupting compounds–a review, Chem. Eng. J., 310 (2017) 437–456.
  60. A. Cesaro, V. Belgiorno, Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review, Open Biotechnol. J., 10 (2016) 151–172.
  61. K. Sornalingam, A. McDonagh, J.L. Zhou, Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: progress and future challenges, Sci. Total Environ., 550 (2016) 209–224.
  62. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review, Sustainable Cities Soc., 27 (2016) 407–418.
  63. M. Muneer, M. Qamar, M. Saquib, D.W. Bahnemann, Heterogeneous photocatalysed reaction of three selected pesticide derivatives propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide, Chemosphere, 61 (2005) 457–468.
  64. M.A. Rahman, M. Mohd, Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, in aqueous suspensions of titanium dioxide, Desalination, 181 (2005) 161–172.
  65. E.R. Bandala, S. Gelover, T. Leal, C. Arancibia, A. Jiménez, C. Estrada, Solar photocatalytic degradation of Aldrin, Catal. Today, 76 (2002) 189–199.
  66. S. Gomez, C.L. Marchena, M.S. Renzini, L. Pizzio, L. Pierella, In situ generated TiO2 over zeolitic supports as reusable photocatalysts for the degradation of dichlorvos, Appl. Catal., B, 162 (2015) 167–173.
  67. E. Evgenidou, J. Poulios, F. Fytianos, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts, Appl. Catal., B, 59 (2005) 81–89.
  68. I. Oller, W. Gernjak, M.I. Maldonado, L.A. Pérez-Estrada, S. Malato, Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale, J. Hazard. Mater., 138 (2006) 507–517.
  69. S.J. Jafari, G. Moussavi, H. Hossaini, Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process, Desal. Water Treat., 57 (2016) 3782–3790.
  70. M. Gar Alalm, A. Tawfik, S. Ookawara, Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
  71. I. Salgado-Tránsito, A.E. Jiménez-González, M.L. Ramón-García, C.A. PinedaArellano, C.A. Estrada-Gasca, Design of a novel CPC collector for the photodegradation of carbaryl pesticides as a function of the solar concentration ratio, Sol. Energy, 115 (2015) 537–551.
  72. O. Sacco, V. Vaiano, D. Han, C. Sannino, D.D. Dionysiou, Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors, Appl. Catal., B,164 (2015) 462–474.
  73. L. Zheng, F. Pi, Y. Wang, H. Xu, Y. Zhang, X. Sun, Photocatalytic degradation of acephate, omethoate, and methyl parathion by Fe3O4@SiO2@mTiO2 nanomicrospheres, J. Hazard. Mater., 315 (2016) 11–22.
  74. C.H. Hung, C. Yuan, H.W. Li, Photodegradation of diethyl phthalate with PANi/CNT/TiO2 immobilized on glass plate irradiated with visible light and simulated sunlight—effect of synthesized method and pH, J. Hazard. Mater., 322 (2017) 243–253.
  75. M. Bodzek, K. Konieczny, Membranes in organic micropollutants removal, Curr. Org. Chem., 22 (2018) 1070–1102.
  76. E. Pino, M.V. Encinas, Photocatalytic degradation of chlorophenols on TiO2-325 mesh and TiO2-P25. An extended kinetic study of photodegradation under competitive conditions, J. Photochem. Photobiol., A, 242 (2012) 20.
  77. J. Rashid, M.A. Barakat, S.L. Pettit, J.N. Kuhn, InVO4/TiO2 composite for visible-light photocatalytic degradation of 2-chlorophenol in wastewater, Environ. Technol., 35 (2014) 2153–2159.
  78. K.K. Singh, K.K. Senapati, C. Borgohain, K.C. Sarma, Newly developed Fe3O4–Cr2O3 magnetic nanocomposite for photocatalytic decomposition of 4-chlorophenol in water, J. Environ. Sci., 52 (2017) 333–340.
  79. A.M. Abeish, H.M. Ang, H. Znad, Solar photocatalytic degradation of chlorophenols mixture (4-CP and
    2,4-DCP): mechanism and kinetic modelling, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 50 (2015) 125–134.
  80. R.A. Doong, C.Y. Liao, Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations, Sep. Purif. Technol., 179 (2017) 403–411.
  81. K. Davididou, E. Hale, N. Lane, E. Chatzisymeon, A. Pichavant, J.F. Hochepied, Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn(IV), Catal. Today, 287 (2017) 3–9.
  82. A. Hernández-Gordillo, S. Obregón, F. Paraguay-Delgado, V. Rodríguez-González, Effective photoreduction of a nitroaromatic environmental endocrine disruptor by AgNPs functionalized on nanocrystalline TiO2, RSC Adv., 5 (2015) 15194–15197.
  83. V. Kalarivalappil, C. Divya, W. Wunderlich, S.C. Pillai, S.J. Hinder, M. Nageri, V. Kumar, B.K. Vijayan, Pd loaded TiO2 nanotubes for the effective catalytic reduction of p-nitrophenol, Catal. Lett., 146 (2016) 474–482.
  84. H.G. Lee, G. Sai-Anand, S. Komathi, A.I. Gopalan, S.W. Kang, K.P. Lee, Efficient visible-light-driven photocatalytic degradation of nitrophenol by using graphene-encapsulated TiO2 nanowires, J. Hazard. Mater., 283 (2015) 400–409.
  85. S. Guo, G. Zhang, Y. Guo, J.C. Yu, Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, Carbon, 60 (2013) 437–444.
  86. S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye wastewater, J. Chem. Technol. Biotechnol., 86 (2011) 1130–1158.
  87. S. Baruah, M.A. Mahmood, T.Z. Myint, T. Bora, J. Dutta, Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods, Beilstein J. Nanotechnol., 1 (2010) 14–20.
  88. S. Danwittayakul, M. Jaisai, T. Koottatep, J. Dutta, Enhancement of photocatalytic degradation of methyl orange by supported zinc oxide nanorods/zinc stannate (ZnO/ ZTO) on porous substrates, Ind. Eng. Chem. Res., 52 (2013) 13629–13636.
  89. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review, Appl. Catal., A, 359 (2009) 25–40.
  90. S. Baruah, M. Jaisai, R. Imani, M.M. Nazhad, J. Dutta, Photocatalytic paper using zinc oxide nanorods, Sci. Technol. Adv. Mater., 11 (2010) 055002, doi: doi: 10.1088/1468-6996/ 11/5/055002.
  91. A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino, A. Gulino, M.V. Brundo, V. Privitera, G. Impellizzeri, Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications, Sci. Rep., 7 (2017) 40895, doi: 10.1038/srep40895.
  92. A.K. Dutta, S.K. Maji, B. Adhikary, C-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant, Mater. Res. Bull., 49 (2014) 28–34.
  93. B. Viswanathan, Photocatalytic degradation of dyes: an overview, Curr. Catal., 7 (2018) 99–121.
  94. E. Archer, B. Petrie, B. Kasprzyk-Hordern, G.M. Wolfaardt, The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters, Chemosphere, 174 (2017) 437–446.
  95. J.O. Tijani, O.O. Fatoba, O.O. Babajide, L.F. Petrik, Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review, Environ. Chem. Lett., 14 (2016) 27–49.
  96. O.A. Jones, J.N. Lester, N. Voulvoulis, Pharmaceuticals: a threat to drinking water?, Trends Biol., 23 (2005) 163–167.
  97. M.J. Benotti, R.A. Trenholm, B.J. Vanderford, J.C. Holady, B.D. Stanford, S.A. Snyder, Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water, Environ. Sci. Technol., 43 (2009) 597–603.
  98. D.E. Curry, K.A. Andrea, A.J. Carrier, C. Nganou, H. Scheller, D. Yang, B. Youden, Y. Zhang, A. Nicholson, K.D. Cui Soakes, S.L. MacQuarrie, M. Lu, X. Zhang, Surface interaction of doxorubicin with anatase determines its photodegradation mechanism: insights into removal of waterborne pharmaceuticals by TiO2 nanoparticles, Environ. Sci.: Nano, 5 (2018) 1027–1035.
  99. M.J. Arlos, M.M. Hatat-Fraile, R. Liang, L.M. Bragg, N.Y. Zhou, S.A. Andrews, M.R. Servos, Photocatalytic decomposition of organic micropollutants using immobilized TiO2 having different isoelectric points, Water Res., 101 (2016) 351–361.
  100. R. Liang, A. Hu, W. Li, Y.N. Zhou, Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts, J. Nanopart. Res., 15 (2013) 1–13, doi:10.1007/s11051-013-1990-x
  101. I.A. Appavoo, J. Hu, Y. Huang, S.F.Y. Li, S.L. Ong, Response surface modeling of carbamazepine (CBZ) removal by graphene-P25 nanocomposites/ UVA process using central composite design, Water Res., 57 (2014) 270–279.
  102. A.S. Mestre, A.P. Carvalho, Photocatalytic degradation of pharmaceuticals carbamazepine, diclofenac, and sulfamethoxazole by semiconductor and carbon materials: a review, Molecules, 24 (2019) 3702, doi:10.3390/molecules 24203702.
  103. J.R. Alvarez-Corena, J.A. Bergendahl, F.L. Hart, Advanced oxidation of five contaminants in water by UV/TiO2: reaction kinetics and byproducts identification, J. Environ. Manage., 181 (2016) 544–551.
  104. V.M. Mboula, V. Héquet, Y. Andrès, Y. Gru, R. Colin, J. Doña-Rodríguez, L. Pastrana-Martínez, A. Silva, M. Leleu, A. Tindall, Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity, Appl. Catal., B, 162 (2015) 437–444.
  105. G. Doná, J.L.A. Dagostin, T.A. Takashina, F. de Castilhos, L. Igarashi-Mafra, A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and vis radiations, Environ. Technol., 39 (2018) 1238–1249.
  106. A. Smýkalová, B. Sokolová, K. Foniok, V. Matějka, P. Praus, Photocatalytic degradation of selected pharmaceuticals using g-C3N4 and TiO2 nanomaterials, Nanomaterials (Basel), 9 (2019) 1194, doi:10.3390/nano9091194.
  107. J.C. Durán-Álvarez, E. Avella, R.M. Ramírez-Zamora, R. Zanella, Photocatalytic degradation of ciprofloxacin using mono-(Au, Ag and Cu) and bi-(Au–Ag and Au–Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight, Catal. Today, 266 (2016) 175–187.
  108. A. Kerc, M. Bekbolet, A.M. Saatci, Effect of partial oxidation by ozonation on the photocatalytic degradation of humic acids, Int. J. Photoenergy, 5 (2003) 75–80.
  109. B.R. Eggins, F.L. Palmer, J.A. Byrne, Photocatalytic treatment of humic substances in drinking water, Water Res., 31 (1997) 1223–1226.
  110. D. Awfa, M. Ateia, M. Fujii, C. Yoshimura, Photocatalytic degradation of organic micropollutants: Inhibition mechanisms by different fractions of natural organic matter, Water Res., 174 (2020) 115643, doi:10.1016/j.watres.2020. 115643.
  111. G.S. Cunha, S.G.S. Santos, B.M. Souza-Chaves, F.C.V. Tânia, S.J.P. Bassin, M.W.C. Dezotti, R.A.R. Boaventura, M.M. Dias, J.C.B. Lopes, V.J.P. Vilar, Removal of bromate from drinking water using a heterogeneous photocatalytic mili-reactor: impact of the reactor material and water matrix, Environ. Sci. Pollut. Res., 26, (2019) 33281–33293.
  112. A. Mills, A. Belghazi, D. Rodman, Bromate removal from drinking water by semiconductor photocatalysis, Water Res., 30 (1996) 1973–1978.
  113. J.L. Guzmán-Mar, M. Villanueva-Rodríguez, L. Hinojosa-Reyes, Application of Semiconductor Photocatalytic Materials for the Removal of Inorganic Compounds from Wastewater, A. Hernández-Ramírez, I. Medina-Ramírez, Eds, Photocatalytic Semiconductors, Springer, International Publishing, Switzerland, 2015.
  114. F.A. Harraz, O.E. Abdel-Salam, A.A. Mostafa, R.M. Mohamed, M. Hanafy, Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal, J. Alloys Compd., 551 (2013) 1–7.
  115. M.J. Lopez-Munoz, J. Aguado, R. van Grieken, J. Marugan, Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions, Appl. Catal., B, 86 (2009) 53–62.
  116. C. Karunakaran, P. Gomathisankar, G. Manikandan, Solar photocatalytic detoxification of cyanide by different forms of TiO2, Korean J. Chem. Eng., 28 (2011) 1214–1220.
  117. C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, Preparation and characterization of ZnO-TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light, Mater. Res. Bull., 46 (2011) 1586–1592.
  118. C. Karunakaran, P. Gomathisankar, G. Manikandan, Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide, Mater. Chem. Phys., 123 (2010) 585–594.
  119. R.M. Mohamed, E.S. Baeissa, Preparation and characterisation of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic degradation of cyanide under visible light, Appl. Catal., A, 464–465 (2013) 218–224.
  120. R.R. Salinas-Guzma´n, J.L. Guzman-Mar, L. Hinojosa-Reyes, J.M. Peralta-Hernandez, A. Hernandez-Ramırez, Enhancement of cyanide photocatalytic degradation using sol–gel ZnO sensitized with cobalt phthalocyanine, J. Sol-Gel Sci. Technol., 54 (2010) 1–7.
  121. S.P. Suriyaraj, M. Benasir Begam, S.G. Deepika, P. Biji, R. Selvakumar, TiO2/PAN nanofiber membrane for photocatalytic removal of nitrate, Water Sci. Technol. Water Supply, 14 (2014) 554–560.
  122. S. Sandhu, S. Krishnan, A.V. Karim, A. Shriwastav, Photocatalytic denitrification of water using polystyrene immobilized TiO2 as floating catalyst, J. Environ. Chem. Eng., 8 (2020) 104471, doi:10.1016/j.jece.2020.104471.
  123. G. Liu, S. You, M. Ma, H. Huang, N. Ren, Removal of nitrate by photocatalytic denitrification using nonlinear optical material, Environ. Sci. Technol., 50 (2016) 11218–11225.
  124. D.S. Dharmagunawardhane, N.L. De Silva, U.B. Gunatilake, C.F. Yan, J. Bandara, Removal of groundwater nitrates by heterogeneous supramolecular complexes-like photocatalytic system based on in-situ generated and highly active Ti3+/Ti2+ states in the reduced TiO2, Mol. Catal., 470 (2019) 89–96.
  125. J. Ye, S.Q. Liu, W.X. Liu, Z.D. Meng, L. Luo, F. Chen, J. Zhou, Photocatalytic simultaneous removal of nitrite and ammonia via a zinc ferrite/activated carbon hybrid catalyst under UV–visible irradiation, ACS Omega, 4 (2019) 6411–6420.
  126. H. Adamu, A.J. McCue, R.S.F. Taylor, H.G. Manyar, J.A. Anderson, Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites, Appl. Catal., B, 217 (2017) 181–191.
  127. J.A. Anderson, Simultaneous photocatalytic degradation of nitrate and oxalic acid over gold promoted titania, Catal. Today, 181 (2012) 171–176.
  128. E. Bahadori, A. Tripodi, G. Ramis, L. Rossetti, Semi-batch photocatalytic reduction of nitrates: role of process conditions and co-catalysts, ChemCatChem, 11 (2019) 4642–4652.
  129. J. Lee, H. Park, W. Choi, Selective photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water, Environ. Sci. Technol., 36 (2002) 5462–5468.
  130. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  131. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  132. L.S. Shyni, J. Krishnegowda, S. Shivanna, Photocatalytic degradation and removal of heavy metals in pharmaceutical waste by selenium doped ZnO nano composite semiconductor, J. Res., 2 (2016) 47–54.
  133. I.A. Ruvarac-Bugarčić, Z.V. Šaponjić, S. Zeca, T. Rajh, J.M. Nedeljkovića, Photocatalytic reduction of cadmium on TiO2 nanoparticles modified with amino acids, Chem. Phys. Lett., 407 (2005) 110–113.
  134. S. Rahimi, M. Ahmadian, R. Barati, N. Yousefi, S.P. Moussavi, K. Rahimi, S. Reshadat, S.R. Ghasemi, N.R. Gilan, Photocatalytic removal of cadmium(II) and lead(II) from simulated wastewater at continuous and batch system, Int. J. Environ. Health Eng., 3 (2014) 31, doi: 10.4103/2277-9183.139756.
  135. H.E. Byrne, D.W. Mazyck, Removal of trace level aqueous mercury by adsorption and photocatalysis on silica–titania composites, J. Hazard. Mater., 170 (2009) 915–919.
  136. F.S. Zhang, J.O. Nriagu, H. Itoh, Photocatalytic removal and recovery of mercury from water using
    TiO2-modified sewage sludge carbon, J. Photochem. Photobiol., A, 167 (2004) 223–228.
  137. W. Choi, J. Yeo, J. Ryu, T. Tachikawa, T. Majima, Photocatalytic oxidation mechanism of As(III) on TiO2: unique role of As(III) as a charge recombinant species, Environ. Sci. Technol., 44 (2010) 9099–9104.
  138. S. Zheng, Y. Cai, K.E. O’Shea, TiO2 photocatalytic degradation of phenylarsonic acid, J. Photochem. Photobiol., A, 210 (2010) 61–68.
  139. E.S. Tsimas, K. Tyrovola, N.P. Xekoukoulotakis, N.P. Nikolaidis, E. Diamadopoulos, D. Mantzavinos, Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions, J. Hazard. Mater., 169 (2009) 376–385.
  140. M.E. Pena, G.P. Korfiatis, M. Patel, L. Lippincott, X. Meng, Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide, Water Res., 39 (2005) 2327–2337.
  141. Q. Li, N.J. Easter, J.K. Shang, As(III) removal by palladiummodified nitrogen-doped titanium oxide nanoparticle photocatalyst, Environ. Sci. Technol., 43 (2009) 1534–1539.
  142. A.H. Fostier, M.S.S. Pereira, S. Rath, J.R. Guimaraes, Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles, Chemosphere, 72 (2008) 319–324.
  143. S. Yao, Y. Jia, Z. Shi, S. Zhao, Photocatalytic oxidation of arsenite by a composite of titanium dioxide and activated carbon fiber, J. Photochem. Photobiol., 86 (2010) 1215–1221.
  144. N. Rivera-Reyna, L. Hinojosa-Reyes, J.L. Guzmán-Mar, Y. Cai, K. O’Shea, A. Hernández-Ramírez, Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor, Photochem. Photobiol. Sci., 12 (2013) 53–59.
  145. Q. Tian, J. Zhuang, J. Wang, L. Xie, P. Liu, Novel photocatalyst, Bi2Sn2O7, for photooxidation of As(III) under visible-light irradiation, Appl. Catal., A, 425–426 (2012) 74–78.
  146. C.E. Barrera-Diaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223–224 (2012)1–12.
  147. J.K. Yang, S.M. Lee, M. Farrokhi, O. Giahi, M.S. Siboni, Photocatalytic removal of Cr(VI) with illuminated TiO2, Desal. Water Treat., 46 (2012) 375–380.
  148. K. Kabra, R. Chaudhary, R.L. Sawhney, Application of solar photocatalytic treatment to industrial wastewater from a chrome plating unit, Int. J. Green Energy, 6 (2009) 83–91.
  149. X. Liu, T. Lv, Y. Liu, L. Pan, Z. Sun, TiO2–Au composite for efficient UV photocatalytic reduction of Cr(VI), Desal. Water Treat., 51 (2013) 3889–3895.
  150. R. Delgado-Balderas, L. Hinojosa-Reyes, J.L. Guzman-Mar, M.T. Garza-Gonzalez, U.J. Lopez-Chuken,
    A. Hernandez-Ramirez, Photocatalytic reduction of Cr(VI) from agricultural soil column leachates using zinc oxide under UV light irradiation, Environ. Technol., 33 (2012) 2673–2680.
  151. M.A. Behnajady, N. Mansoriieh, N. Modirshahla, M. Shokri, Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr(VI) by immobilized ZnO, Environ. Technol., 33 (2012) 265–271.
  152. X. Liu, T. Lv, L. Pan, Z. Sun, C.Q. Sun, Microwave-assisted synthesis of ZnO for photocatalytic reduction of Cr(VI) in aqueous solution, Desal. Water Treat., 42 (2012) 216–221.
  153. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI), Chem. Eng. J., 183 (2012) 238–243.
  154. J.C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate, Environ. Sci. Technol., 37 (2003) 2296–2301.
  155. J. Lonnen, S. Kilvington, S.C. Kehoe, F. Al-Touati, K.G. McGuigan, Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Res., 39 (2005) 877–883.
  156. Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Microporous Mesoporous Mater., 114 (2008) 431–439.
  157. O. Akhavan, Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Colloid Interface Sci., 336 (2009) 117–124.
  158. P. Bhadra, M.K. Mitra, G.C. Das, R. Dey, S. Mukherjee, Interaction of chitosan capped ZnO nanorods with Escherichia coli, Mater. Sci. Eng., C, 31 (2011) 929–937.
  159. M. Eskandari, N. Haghighi, V. Ahmadi, F. Haghighi, S.R. Mohammadi, Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass, Physica B, 406 (2011) 112–114.
  160. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal., B, 187 (2016) 47–58.
  161. X. Zeng, Z. Wang, N. Meng, D.T. McCarthy, A. Deletic, J.H. Pan, X. Zhang, Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection, Appl. Catal., B, 202 (2017) 33–41.
  162. S.F. Anis, R. Hashaikeh, N. Hilal, Functional materials in desalination: a review, Desalination, 468 (2019) 114077, doi: 10.1016/j.desal.2019.114077.
  163. C. Pablos, J. Marugán, R. van Grieken, E. Serrano, Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2, Water Res., 47 (2013) 1237–1245.
  164. J. Bogdan, J. Szczawiński, J. Zarzyńska, J. Pławińska-Czarnak, Mechanizmy inaktywacji bakterii na powierzchniach fotokatalitycznych, Med. Weter., 70 (2014) 657–662 (in Polish).
  165. M.J. Benotti, B.D. Stanford, E.C. Wert, S.A. Snyder, Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water, Water Res., 43 (2009) 1513–1522.
  166. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, P.J.J. Li, D. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42 (2008) 4591–4602.