References
- F. Lu, D. Astruc, Nanocatalysts and other nanomaterials for
water remediation from organic pollutants, Coord. Chem.
Rev., 408 (2020) 213180, doi: 10.1016/j.ccr.2020.213180.
- R. Molinari, A. Caruso, L. Palmisano, Photocatalytic Processes
in Membrane Reactors, E. Drioli, L. Giorno, E. Fontananova,
Eds., Comprehensive Membrane Science and Engineering,
2nd ed., Vol. 3, Elsevier, Oxford, 2017, pp. 101–138.
- P. Anil Kumar Reddy, P. Venkata Laxma Reddy, E. Kwon,
K.-H. Kim, T. Akter, S. Kalagara, Recent advances in photocatalytic
treatment of pollutants in aqueous media, Environ.
Int., 91 (2016) 94–103.
- X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology
in water and wastewater treatment, Water Res., 47 (2013)
3931–3946.
- E. Friehs, Y. AlSalka, R. Jonczyk, A. Lavrentieva, A. Jochums,
J.-G. Walter, F. Stahl, T. Scheper, D. Bahnemann, Toxicity,
phototoxicity and biocidal activity of nanoparticles employed
in photocatalysis, J. Photochem. Photobiol., C, 29 (2016)
1–28.
- A. Turki, C. Guillard, F. Dappozze, Z. Ksibi, G. Berhault,
H. Kochkar, Phenol photocatalytic degradation over anisotropic
TiO2 nanomaterials: kinetic study, adsorption isotherms
and formal mechanisms, Appl. Catal., B, 163 (2015) 404–414.
- F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli,
M.L. Curri, A. Agostiano, R. Comparelli, Nanocomposite
materials for photocatalytic degradation of pollutants, Catal.
Today, 281 (2016) 85–100.
- M. Bodzek, M. Rajca, Photocatalysis in the treatment and
disinfection of water. Part I. Theoretical backgrounds, Ecol.
Chem. Eng. S, 19 (2012) 489–512.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology:
a review, Water
Res., 44 (2010) 2997–3027.
- O.K. Dalrymple, E. Stefanakos, M.A. Trotz, D. Yogi Goswami,
A review of the mechanisms and modeling of photocatalytic
disinfection, Appl. Catal., B, 98 (2010) 27–38.
- T. Bora, J. Dutta, Applications of nanotechnology in wastewater
treatment—a review, J. Nanosci. Nanotechnol., 14 (2014)
613–626.
- T. Kasza, Badanie właściwości fotokatalitycznych i
charakterystyka fizykochemiczna nanokrystalicznych filmów
TiO2 na podłożu ceramicznym, Ph.D. Thesis, Politechnika
Krakowska, Kraków, 2007 (in Polish).
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras,
A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne,
K. O’shea, M.H. Entezari, D.D. Dionysiou, A review on
the visible light active titanium dioxide photocatalysts for
environmental applications, Appl. Catal., B, 125 (2012)
331–349.
- S. Malato, J. Blanco, D.C. Alarcón, M.I. Maldonado, P. Fernández-Ibáñez, W. Gernjak, Photocatalytic decontamination and
disinfection of water with solar collectors, Catal. Today,
122 (2007) 137–149.
- C. Byrne, G. Subramanian, C. Pillai Suresh, Recent advances
in photocatalysis for environmental applications, J. Environ.
Chem. Eng., 6 (2018) 3531–3555.
- P. Ganguly, C. Byrnea, G. Subramanianc, C. Pillai Suresh, Recent
advances in photocatalysis for environmental applications,
Appl. Catal., B, 225 (2018) 51–75.
- J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental
photocatalyst that generates OH radicals under visible light,
Environ. Sci. Technol., 44 (2010) 6849–6854.
- X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance
enhancement of ZnO photocatalyst via synergic effect of surface
oxygen defect and graphene hybridization, Langmuir, 29 (2013)
3097–3105.
- C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu,
Cost-effective large-scale synthesis of ZnO photocatalyst
with excellent performance for dye photodegradation, Chem.
Commun., 48 (2012) 2858–2860.
- Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent
and photocatalytic activity of ZnO hybridized with graphitelike
C3N4, Energy Environ. Sci., 4 (2011) 2922–2929.
- C. Wu, L. Shen, Y.-C. Zhang, Q. Huang, Solvothermal
synthesis of Cr-doped ZnO nanowires with visible light-driven
photocatalytic activity, Mater. Lett., 65 (2011) 1794–1796.
- W. Xie, Y. Li, W. Sun, J.C. Huang, H. Xie, X. Zhao, Surface
modification of ZnO with Ag improves its photocatalytic
efficiency and photostability, J. Photochem. Photobiol., A,
216 (2010) 149–155.
- L.-Y. Yang, S.Y. Dong, J.-H. Sun, J.-L. Feng, Q.-H. Wu,
S.-P. Sun, Microwave-assisted preparation, characterization
and photocatalytic properties of a dumbbell-shaped
ZnO photocatalyst, J. Hazard. Mater., 179 (2010) 438–443.
- S.C. Sharma, ZnO nano-flowers from Carica papaya milk:
degradation of Alizarin Red-S dye and antibacterial activity
against Pseudomonas aeruginosa and Staphylococcus aureus, Optik
– Int. J. Light Electron Optics, 127 (2016) 6498–6512.
- A. Zyoud, M. Dwikat, S. Al-Shakhshir, S. Ateeq, J. Shteiwi,
A. Zu’bi, M.H.S. Helal, G. Campet, D.H. Park, H. Kwon,
T.W. Kim, M. Kharoof, R. Shawahna, H.S. Hilal, Natural dyesensitized
ZnO nano-particles as photo-catalysts in complete
degradation of Escherichia coli bacteria and their organic
content, J. Photochem. Photobiol., A, 328 (2016) 207–216.
- M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat,
Remediation of wastewater using various nano-materials,
Arabian J. Chem., 12 (2019) 4897–4919.
- T. Pradeep, Anshup, Noble metal nanoparticles for water
purification: a critical review, Thin Solid Films, 517 (2009)
6441–6478.
- Y. Zhang, B. Wu, H. Xu, H. Liu, M. Wang, Y. He, B. Pan,
Nanomaterials-enabled water and wastewater treatment,
NanoImpact, 3–4 (2016) 22–39.
- M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and
recent developments in photocatalytic
water-splitting using
TiO2 for hydrogen production, Renewable Sustainable Energy
Rev., 11 (2007) 401–425.
- A. Zielińska-Jurek, Z. Wei, I. Wysocka, P. Szweda, E. Kowalska,
The effect of nanoparticles size on photocatalytic and
antimicrobial properties of Ag-Pt/TiO2 photocatalysts, Appl.
Surf. Sci., 353 (2015) 317–325.
- O.A. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis:
recent advances and applications, Catalysts, 3 (2013) 189–218.
- S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal
nanostructures for efficient conversion of solar to chemical
energy, Nat. Mater., 10 (2011) 911–921.
- V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann,
S.C. Pillai, Visible-light activation of TiO2 photocatalysts:
advances in theory and experiments, J. Photochem. Photobiol.,
C, 25 (2015) 1–29.
- C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi,
M.C. Paganini, E. Giamello, N-doped TiO2: theory and
experiment, Chem. Phys., 339 (2007) 44–56.
- T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishi,
S. Ito, A patterned TiO2(Anatase)/TiO2(Rutile) bilayer-type
photocatalyst: effect of the Anatase/Rutile junction on the
photocatalytic activity, Angew. Chem. Int. Ed., 41 (2002)
2811–2813.
- V. Etacheri, M.K. Seery, S.J. Hinder, S.C. Pillai, Highly visible
light active TiO2–xNx heterojunction photocatalysts, Chem.
Mater., 22 (2010) 3843–3853.
- G.-S. Li, D.-Q. Zhang, J.C. Yu, A new visible-light photocatalyst:
CdS quantum dots embedded mesoporous TiO2, Environ. Sci.
Technol., 43 (2009) 7079–7085.
- H. Zhu, R. Jiang, L. Xiao, Y. Chang, Y. Guan, X. Li, G. Zeng,
Photocatalytic decolorization and degradation of Congo Red on
innovative crosslinked chitosan/nano-CdS composite catalyst
under visible light irradiation,
J. Hazard. Mater., 169 (2009)
933–940.
- P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Synthesis
of CuO-ZnO nano-photocatalyst for visible light assisted
degradation of a textile dye in aqueous solution, Chem. Eng. J.,
171 (2011) 136–140.
- V. Eskizeybek, F. Sari, H. Gulce, A. Gulce, A. Avci, Preparation
of the new polyaniline/ZnO nanocomposite and its photocatalytic
activity for degradation of methylene blue and
malachite green dyes under UV and natural sun lights
irradiations, Appl. Catal., B, 119 (2012) 197–206.
- A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of
titanium dioxide onto supporting materials in heterogeneous
photocatalysis: a review, Appl. Catal., A, 389 (2010) 1–8.
- R. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam, J. Kim,
Photocatalytic systems as an advanced environmental remediation:
recent developments, limitations and new avenues
for applications, J. Environ. Chem. Eng., 4 (2016) 4143–4164.
- R.M. Cámara, R. Portela, F. Gutiérrez-Martín, B. Sánchez,
Photocatalytic activity of TiO2 films prepared by surfactantmediated
sol–gel methods over commercial polymer substrates,
Chem. Eng. J., 283 (2016) 535–543.
- L. Sun, Z. Zhao, Y. Zhou, L. Liu, Anatase TiO2 nanocrystals with
exposed {001} facets on graphene sheets via molecular grafting
for enhanced photocatalytic activity, Nanoscale, 4 (2012) 613–620.
- Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao,
C. Xie, Enhanced photocatalytic activity of chemically bonded
TiO2/graphene composites based on the effective interfacial
charge transfer through the C–Ti bond, ACS Catal., 3 (2013)
1477–1485.
- L.M. Pastrana-Martínez, S. Morales-Torres, J.L. Figueiredo,
J.L. Faria, A.M.T. Silva, Graphene oxide based ultrafiltration
membranes for photocatalytic degradation of organic pollutants
in salty water, Water Res., 77 (2015) 179–190.
- W. Li, Y. Zhang, G. Tian, S. Xie, Q. Xu, L. Wang, J. Tian, Y. Bu,
Fabrication of graphene-modified nano-sized red phosphorus
for enhanced photocatalytic performance, J. Mol. Catal. A:
Chem., 423 (2016) 356–364.
- T.T. Lim, P.S. Yap, M. Srinivasan, A.G. Fane, TiO2/AC composites
for synergistic adsorption-photocatalysis processes: present
challenges and further developments for water treatment and
reclamation, Crit. Rev. Env. Sci. Technol., 41 (2011) 1173–1230.
- P.S. Yap, T.T. Lim, M. Lim, M. Srinivasan, Synthesis and
characterization of nitrogen-doped TiO2/AC composite
for the adsorption–photocatalytic degradation of aqueous
bisphenol—a using solar light, Catal. Today, 151 (2010) 8–13.
- B. Gao, P.S. Yap, T.M. Lim, T.T. Lim, Adsorption-photocatalytic
degradation of Acid Red 88 by supported TiO2: effect of
activated carbon support and aqueous anions, Chem. Eng. J.,
171 (2011) 1098–1107.
- S.S. Dong, J.B. Zhang, L.L. Gao, Y.L. Wang, D.-D. Zhou,
Preparation of spherical activated carbon-supported and
Er3+: YAlO3– doped TiO2 photocatalyst for methyl orange
degradation under visible light, Trans. Nonferrous Met. Soc.
China, 22 (2012) 2477–2483.
- J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P. Alvarez,
M. Alvim-Ferraz, J. Dias, Activated carbon modifications
to enhance its water treatment applications. An overview,
J. Hazard. Mater., 187 (2011) 1–23.
- X. Fu, H. Yang, G. Lu, Y. Tu, J. Wu, Improved performance of
surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution, Mater.
Sci. Semicond. Process., 39 (2015) 362–370.
- A.S. Adeleye, J.R. Conway, K. Garner, Y. Huang, Y. Su,
A.A. Keller, Engineered nanomaterials for water treatment and
remediation: costs, benefits, and applicability, Chem. Eng. J.,
286 (2016) 640–662.
- S.T. Lin, M. Thirumavalavan, T.Y. Jiang, J.F. Lee, Synthesis of
ZnO/Zn nano photocatalyst using modified polysaccharides
for photodegradation of dyes, Carbohydr. Polym., 105 (2014)
1–9.
- S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of
parameters on the heterogeneous photocatalytic degradation
of pesticides and phenolic contaminants in wastewater: a short
review, J. Environ. Manage., 92 (2011) 311–330.
- R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai,
A review of solar and visible light active TiO2 photocatalysis for
treating bacteria, cyanotoxins and contaminants of emerging
concern, Mater. Sci. Semicond. Process., 42 (2016) 2–14.
- M. Bodzek, Membrane separation techniques – removal
of inorganic and organic admixtures and impurities from
water environment – review, Arch. Environ. Prot., 45 4 (2019)
4–19.
- M. Gmurek, M. Olak-Kucharczyk, S. Ledakowicz, Photochemical
decomposition of endocrine disrupting compounds–a review,
Chem. Eng. J., 310 (2017) 437–456.
- A. Cesaro, V. Belgiorno, Removal of endocrine disruptors from
urban wastewater by advanced oxidation processes (AOPs):
a review, Open Biotechnol. J., 10 (2016) 151–172.
- K. Sornalingam, A. McDonagh, J.L. Zhou, Photodegradation of
estrogenic endocrine disrupting steroidal hormones in aqueous
systems: progress and future challenges, Sci. Total Environ.,
550 (2016) 209–224.
- A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of
pharmaceuticals and endocrine disrupting compounds from
water by zinc oxide-based photocatalytic degradation: a review,
Sustainable Cities Soc., 27 (2016) 407–418.
- M. Muneer, M. Qamar, M. Saquib, D.W. Bahnemann,
Heterogeneous photocatalysed reaction of three selected
pesticide derivatives propham, propachlor and tebuthiuron
in aqueous suspensions of titanium dioxide, Chemosphere,
61 (2005) 457–468.
- M.A. Rahman, M. Mohd, Photocatalysed degradation of two
selected pesticide derivatives, dichlorvos and phosphamidon,
in aqueous suspensions of titanium dioxide, Desalination, 181
(2005) 161–172.
- E.R. Bandala, S. Gelover, T. Leal, C. Arancibia, A. Jiménez,
C. Estrada, Solar photocatalytic degradation of Aldrin, Catal.
Today, 76 (2002) 189–199.
- S. Gomez, C.L. Marchena, M.S. Renzini, L. Pizzio, L. Pierella,
In situ generated TiO2 over zeolitic supports as reusable
photocatalysts for the degradation of dichlorvos, Appl. Catal.,
B, 162 (2015) 167–173.
- E. Evgenidou, J. Poulios, F. Fytianos, Semiconductor-sensitized
photodegradation of dichlorvos in water using TiO2 and ZnO as
catalysts, Appl. Catal., B, 59 (2005) 81–89.
- I. Oller, W. Gernjak, M.I. Maldonado, L.A. Pérez-Estrada, S.
Malato, Solar photocatalytic degradation of some hazardous
water-soluble pesticides at pilot-plant scale, J. Hazard. Mater.,
138 (2006) 507–517.
- S.J. Jafari, G. Moussavi, H. Hossaini, Degradation and
mineralization of diazinon pesticide in UVC and UVC/TiO2
process, Desal. Water Treat., 57 (2016) 3782–3790.
- M. Gar Alalm, A. Tawfik, S. Ookawara, Comparison of solar
TiO2 photocatalysis and solar photo-Fenton for treatment
of pesticides industry wastewater: operational conditions,
kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
- I. Salgado-Tránsito, A.E. Jiménez-González, M.L. Ramón-García, C.A. PinedaArellano, C.A. Estrada-Gasca, Design of
a novel CPC collector for the photodegradation of carbaryl
pesticides as a function of the solar concentration ratio, Sol.
Energy, 115 (2015) 537–551.
- O. Sacco, V. Vaiano, D. Han, C. Sannino, D.D. Dionysiou,
Photocatalytic removal of atrazine using N-doped TiO2
supported on phosphors, Appl. Catal., B,164 (2015) 462–474.
- L. Zheng, F. Pi, Y. Wang, H. Xu, Y. Zhang, X. Sun, Photocatalytic
degradation of acephate, omethoate, and methyl parathion
by Fe3O4@SiO2@mTiO2 nanomicrospheres, J. Hazard. Mater.,
315 (2016) 11–22.
- C.H. Hung, C. Yuan, H.W. Li, Photodegradation of diethyl
phthalate with PANi/CNT/TiO2 immobilized on glass plate
irradiated with visible light and simulated sunlight—effect
of synthesized method and pH, J. Hazard. Mater., 322 (2017)
243–253.
- M. Bodzek, K. Konieczny, Membranes in organic micropollutants
removal, Curr. Org. Chem., 22 (2018) 1070–1102.
- E. Pino, M.V. Encinas, Photocatalytic degradation of
chlorophenols on TiO2-325 mesh and TiO2-P25. An extended
kinetic study of photodegradation under competitive
conditions, J. Photochem. Photobiol., A, 242 (2012) 20.
- J. Rashid, M.A. Barakat, S.L. Pettit, J.N. Kuhn, InVO4/TiO2
composite for visible-light photocatalytic degradation of
2-chlorophenol in wastewater, Environ. Technol., 35 (2014)
2153–2159.
- K.K. Singh, K.K. Senapati, C. Borgohain, K.C. Sarma,
Newly developed Fe3O4–Cr2O3 magnetic nanocomposite for
photocatalytic decomposition of 4-chlorophenol in water,
J. Environ. Sci., 52 (2017) 333–340.
- A.M. Abeish, H.M. Ang, H. Znad, Solar photocatalytic
degradation of chlorophenols mixture (4-CP and
2,4-DCP):
mechanism and kinetic modelling, J. Environ. Sci. Health.
Part A Toxic/Hazard. Subst. Environ. Eng., 50 (2015) 125–134.
- R.A. Doong, C.Y. Liao, Enhanced photocatalytic activity of
Cu-deposited N-TiO2/titanate nanotubes under UV and visible
light irradiations, Sep. Purif. Technol., 179 (2017) 403–411.
- K. Davididou, E. Hale, N. Lane, E. Chatzisymeon, A. Pichavant,
J.F. Hochepied, Photocatalytic treatment of saccharin and
bisphenol-A in the presence of TiO2 nanocomposites tuned by
Sn(IV), Catal. Today, 287 (2017) 3–9.
- A. Hernández-Gordillo, S. Obregón, F. Paraguay-Delgado,
V. Rodríguez-González, Effective photoreduction of a
nitroaromatic environmental endocrine disruptor by AgNPs
functionalized on nanocrystalline TiO2, RSC Adv., 5 (2015)
15194–15197.
- V. Kalarivalappil, C. Divya, W. Wunderlich, S.C. Pillai,
S.J. Hinder, M. Nageri, V. Kumar, B.K. Vijayan, Pd loaded TiO2
nanotubes for the effective catalytic reduction of p-nitrophenol,
Catal. Lett., 146 (2016) 474–482.
- H.G. Lee, G. Sai-Anand, S. Komathi, A.I. Gopalan,
S.W. Kang, K.P. Lee, Efficient visible-light-driven photocatalytic
degradation of nitrophenol by using graphene-encapsulated
TiO2 nanowires, J. Hazard. Mater., 283 (2015) 400–409.
- S. Guo, G. Zhang, Y. Guo, J.C. Yu, Graphene oxide–Fe2O3
hybrid material as highly efficient heterogeneous catalyst
for degradation of organic contaminants, Carbon, 60 (2013)
437–444.
- S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, Recent developments
of metal oxide semiconductors as photocatalysts in advanced
oxidation processes (AOPs) for treatment of dye wastewater,
J. Chem. Technol. Biotechnol., 86 (2011) 1130–1158.
- S. Baruah, M.A. Mahmood, T.Z. Myint, T. Bora, J. Dutta,
Enhanced visible light photocatalysis through fast crystallization
of zinc oxide nanorods, Beilstein J. Nanotechnol.,
1 (2010) 14–20.
- S. Danwittayakul, M. Jaisai, T. Koottatep, J. Dutta,
Enhancement of photocatalytic degradation of methyl orange
by supported zinc oxide nanorods/zinc stannate (ZnO/
ZTO) on porous substrates, Ind. Eng. Chem. Res., 52 (2013)
13629–13636.
- F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam,
R. Naidu, Tailored titanium dioxide photocatalysts for the
degradation of organic dyes in wastewater treatment: a
review, Appl. Catal., A, 359 (2009) 25–40.
- S. Baruah, M. Jaisai, R. Imani, M.M. Nazhad, J. Dutta,
Photocatalytic paper using zinc oxide nanorods, Sci. Technol.
Adv. Mater., 11 (2010) 055002, doi: doi: 10.1088/1468-6996/
11/5/055002.
- A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino,
A. Gulino, M.V. Brundo, V. Privitera, G. Impellizzeri, Novel
synthesis of ZnO/PMMA nanocomposites for photocatalytic
applications, Sci. Rep., 7 (2017) 40895, doi: 10.1038/srep40895.
- A.K. Dutta, S.K. Maji, B. Adhikary, C-Fe2O3 nanoparticles: an
easily recoverable effective photo-catalyst for the degradation
of rose bengal and methylene blue dyes in the waste-water
treatment plant, Mater. Res. Bull., 49 (2014) 28–34.
- B. Viswanathan, Photocatalytic degradation of dyes: an
overview, Curr. Catal., 7 (2018) 99–121.
- E. Archer, B. Petrie, B. Kasprzyk-Hordern, G.M. Wolfaardt,
The fate of pharmaceuticals and personal care products
(PPCPs), endocrine disrupting contaminants (EDCs),
metabolites and illicit drugs in a WWTW and environmental
waters, Chemosphere, 174 (2017) 437–446.
- J.O. Tijani, O.O. Fatoba, O.O. Babajide, L.F. Petrik, Pharmaceuticals,
endocrine disruptors, personal care products,
nanomaterials and perfluorinated pollutants: a review, Environ.
Chem. Lett., 14 (2016) 27–49.
- O.A. Jones, J.N. Lester, N. Voulvoulis, Pharmaceuticals:
a threat to drinking water?, Trends Biol., 23 (2005) 163–167.
- M.J. Benotti, R.A. Trenholm, B.J. Vanderford, J.C. Holady,
B.D. Stanford, S.A. Snyder, Pharmaceuticals and endocrine
disrupting compounds in U.S. drinking water, Environ. Sci.
Technol., 43 (2009) 597–603.
- D.E. Curry, K.A. Andrea, A.J. Carrier, C. Nganou, H. Scheller,
D. Yang, B. Youden, Y. Zhang, A. Nicholson, K.D. Cui Soakes,
S.L. MacQuarrie, M. Lu, X. Zhang, Surface interaction of
doxorubicin with anatase determines its photodegradation
mechanism: insights into removal of waterborne
pharmaceuticals by TiO2 nanoparticles, Environ. Sci.: Nano,
5 (2018) 1027–1035.
- M.J. Arlos, M.M. Hatat-Fraile, R. Liang, L.M. Bragg,
N.Y. Zhou, S.A. Andrews, M.R. Servos, Photocatalytic
decomposition of organic micropollutants using immobilized
TiO2 having different isoelectric points, Water Res., 101 (2016)
351–361.
- R. Liang, A. Hu, W. Li, Y.N. Zhou, Enhanced degradation of
persistent pharmaceuticals found in wastewater treatment
effluents using TiO2 nanobelt photocatalysts, J. Nanopart.
Res., 15 (2013) 1–13, doi:10.1007/s11051-013-1990-x
- I.A. Appavoo, J. Hu, Y. Huang, S.F.Y. Li, S.L. Ong, Response
surface modeling of carbamazepine (CBZ) removal by
graphene-P25 nanocomposites/ UVA process using central
composite design, Water Res., 57 (2014) 270–279.
- A.S. Mestre, A.P. Carvalho, Photocatalytic degradation
of pharmaceuticals carbamazepine, diclofenac, and
sulfamethoxazole by semiconductor and carbon materials:
a review, Molecules, 24 (2019) 3702, doi:10.3390/molecules
24203702.
- J.R. Alvarez-Corena, J.A. Bergendahl, F.L. Hart, Advanced
oxidation of five contaminants in water by UV/TiO2: reaction
kinetics and byproducts identification, J. Environ. Manage.,
181 (2016) 544–551.
- V.M. Mboula, V. Héquet, Y. Andrès, Y. Gru, R. Colin,
J. Doña-Rodríguez, L. Pastrana-Martínez, A. Silva, M. Leleu,
A. Tindall, Photocatalytic degradation of estradiol under
simulated solar light and assessment of estrogenic activity,
Appl. Catal., B, 162 (2015) 437–444.
- G. Doná, J.L.A. Dagostin, T.A. Takashina, F. de Castilhos,
L. Igarashi-Mafra, A comparative approach of methylparaben
photocatalytic degradation assisted by UV-C, UV-A and vis
radiations, Environ. Technol., 39 (2018) 1238–1249.
- A. Smýkalová, B. Sokolová, K. Foniok, V. Matějka, P. Praus,
Photocatalytic degradation of selected pharmaceuticals
using g-C3N4 and TiO2 nanomaterials, Nanomaterials (Basel),
9 (2019) 1194, doi:10.3390/nano9091194.
- J.C. Durán-Álvarez, E. Avella, R.M. Ramírez-Zamora,
R. Zanella, Photocatalytic degradation of ciprofloxacin using
mono-(Au, Ag and Cu) and bi-(Au–Ag and Au–Cu) metallic
nanoparticles supported on TiO2 under UV-C and simulated
sunlight, Catal. Today, 266 (2016) 175–187.
- A. Kerc, M. Bekbolet, A.M. Saatci, Effect of partial oxidation
by ozonation on the photocatalytic degradation of humic
acids, Int. J. Photoenergy, 5 (2003) 75–80.
- B.R. Eggins, F.L. Palmer, J.A. Byrne, Photocatalytic treatment
of humic substances in drinking water, Water Res., 31 (1997)
1223–1226.
- D. Awfa, M. Ateia, M. Fujii, C. Yoshimura, Photocatalytic
degradation of organic micropollutants: Inhibition mechanisms
by different fractions of natural organic matter,
Water Res., 174 (2020) 115643, doi:10.1016/j.watres.2020.
115643.
- G.S. Cunha, S.G.S. Santos, B.M. Souza-Chaves, F.C.V. Tânia,
S.J.P. Bassin, M.W.C. Dezotti, R.A.R. Boaventura, M.M. Dias,
J.C.B. Lopes, V.J.P. Vilar, Removal of bromate from drinking
water using a heterogeneous photocatalytic mili-reactor:
impact of the reactor material and water matrix, Environ.
Sci. Pollut. Res., 26, (2019) 33281–33293.
- A. Mills, A. Belghazi, D. Rodman, Bromate removal from
drinking water by semiconductor photocatalysis, Water Res.,
30 (1996) 1973–1978.
- J.L. Guzmán-Mar, M. Villanueva-Rodríguez, L. Hinojosa-Reyes, Application of Semiconductor Photocatalytic Materials
for the Removal of Inorganic Compounds from Wastewater,
A. Hernández-Ramírez, I. Medina-Ramírez, Eds, Photocatalytic
Semiconductors, Springer, International Publishing,
Switzerland, 2015.
- F.A. Harraz, O.E. Abdel-Salam, A.A. Mostafa, R.M. Mohamed,
M. Hanafy, Rapid synthesis of titania–silica nanoparticles
photocatalyst by a modified sol–gel method for cyanide
degradation and heavy metals removal, J. Alloys Compd.,
551 (2013) 1–7.
- M.J. Lopez-Munoz, J. Aguado, R. van Grieken, J. Marugan,
Simultaneous photocatalytic reduction of silver and oxidation
of cyanide from dicyanoargentate solutions, Appl. Catal., B,
86 (2009) 53–62.
- C. Karunakaran, P. Gomathisankar, G. Manikandan, Solar
photocatalytic detoxification of cyanide by different forms of
TiO2, Korean J. Chem. Eng., 28 (2011) 1214–1220.
- C. Karunakaran, G. Abiramasundari, P. Gomathisankar,
G. Manikandan, V. Anandi, Preparation and characterization
of ZnO-TiO2 nanocomposite for photocatalytic disinfection
of bacteria and detoxification of cyanide under visible light,
Mater. Res. Bull., 46 (2011) 1586–1592.
- C. Karunakaran, P. Gomathisankar, G. Manikandan,
Preparation and characterization of antimicrobial Ce-doped
ZnO nanoparticles for photocatalytic detoxification of
cyanide, Mater. Chem. Phys., 123 (2010) 585–594.
- R.M. Mohamed, E.S. Baeissa, Preparation and characterisation
of Pd–TiO2–hydroxyapatite nanoparticles for the
photocatalytic degradation of cyanide under visible light,
Appl. Catal., A, 464–465 (2013) 218–224.
- R.R. Salinas-Guzma´n, J.L. Guzman-Mar, L. Hinojosa-Reyes, J.M. Peralta-Hernandez, A. Hernandez-Ramırez,
Enhancement of cyanide photocatalytic degradation using
sol–gel ZnO sensitized with cobalt phthalocyanine, J. Sol-Gel
Sci. Technol., 54 (2010) 1–7.
- S.P. Suriyaraj, M. Benasir Begam, S.G. Deepika, P. Biji,
R. Selvakumar, TiO2/PAN nanofiber membrane for photocatalytic
removal of nitrate, Water Sci. Technol. Water Supply,
14 (2014) 554–560.
- S. Sandhu, S. Krishnan, A.V. Karim, A. Shriwastav,
Photocatalytic denitrification of water using polystyrene
immobilized TiO2 as floating catalyst, J. Environ. Chem. Eng.,
8 (2020) 104471, doi:10.1016/j.jece.2020.104471.
- G. Liu, S. You, M. Ma, H. Huang, N. Ren, Removal of nitrate
by photocatalytic denitrification using nonlinear optical
material, Environ. Sci. Technol., 50 (2016) 11218–11225.
- D.S. Dharmagunawardhane, N.L. De Silva, U.B. Gunatilake,
C.F. Yan, J. Bandara, Removal of groundwater nitrates by
heterogeneous supramolecular complexes-like photocatalytic
system based on in-situ generated and highly active Ti3+/Ti2+ states in the reduced TiO2, Mol. Catal., 470 (2019) 89–96.
- J. Ye, S.Q. Liu, W.X. Liu, Z.D. Meng, L. Luo, F. Chen, J. Zhou,
Photocatalytic simultaneous removal of nitrite and ammonia
via a zinc ferrite/activated carbon hybrid catalyst under UV–visible irradiation, ACS Omega, 4 (2019) 6411–6420.
- H. Adamu, A.J. McCue, R.S.F. Taylor, H.G. Manyar,
J.A. Anderson, Simultaneous photocatalytic removal of
nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC
composites, Appl. Catal., B, 217 (2017) 181–191.
- J.A. Anderson, Simultaneous photocatalytic degradation
of nitrate and oxalic acid over gold promoted titania, Catal.
Today, 181 (2012) 171–176.
- E. Bahadori, A. Tripodi, G. Ramis, L. Rossetti, Semi-batch
photocatalytic reduction of nitrates: role of process conditions
and co-catalysts, ChemCatChem, 11 (2019) 4642–4652.
- J. Lee, H. Park, W. Choi, Selective photocatalytic oxidation of
NH3 to N2 on platinized TiO2 in water, Environ. Sci. Technol.,
36 (2002) 5462–5468.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- L.S. Shyni, J. Krishnegowda, S. Shivanna, Photocatalytic
degradation and removal of heavy metals in pharmaceutical
waste by selenium doped ZnO nano composite semiconductor,
J. Res., 2 (2016) 47–54.
- I.A. Ruvarac-Bugarčić, Z.V. Šaponjić, S. Zeca, T. Rajh,
J.M. Nedeljkovića, Photocatalytic reduction of cadmium on
TiO2 nanoparticles modified with amino acids, Chem. Phys.
Lett., 407 (2005) 110–113.
- S. Rahimi, M. Ahmadian, R. Barati, N. Yousefi, S.P. Moussavi,
K. Rahimi, S. Reshadat, S.R. Ghasemi, N.R. Gilan, Photocatalytic
removal of cadmium(II) and lead(II) from simulated
wastewater at continuous and batch system, Int. J. Environ.
Health Eng., 3 (2014) 31, doi: 10.4103/2277-9183.139756.
- H.E. Byrne, D.W. Mazyck, Removal of trace level aqueous
mercury by adsorption and photocatalysis on silica–titania
composites, J. Hazard. Mater., 170 (2009) 915–919.
- F.S. Zhang, J.O. Nriagu, H. Itoh, Photocatalytic removal
and recovery of mercury from water using
TiO2-modified
sewage sludge carbon, J. Photochem. Photobiol., A, 167 (2004)
223–228.
- W. Choi, J. Yeo, J. Ryu, T. Tachikawa, T. Majima, Photocatalytic
oxidation mechanism of As(III) on TiO2: unique role of As(III)
as a charge recombinant species, Environ. Sci. Technol.,
44 (2010) 9099–9104.
- S. Zheng, Y. Cai, K.E. O’Shea, TiO2 photocatalytic degradation
of phenylarsonic acid, J. Photochem. Photobiol., A, 210 (2010)
61–68.
- E.S. Tsimas, K. Tyrovola, N.P. Xekoukoulotakis, N.P. Nikolaidis,
E. Diamadopoulos, D. Mantzavinos, Simultaneous
photocatalytic oxidation of As(III) and humic acid in aqueous
TiO2 suspensions, J. Hazard. Mater., 169 (2009) 376–385.
- M.E. Pena, G.P. Korfiatis, M. Patel, L. Lippincott, X. Meng,
Adsorption of As(V) and As(III) by nanocrystalline titanium
dioxide, Water Res., 39 (2005) 2327–2337.
- Q. Li, N.J. Easter, J.K. Shang, As(III) removal by palladiummodified
nitrogen-doped titanium oxide nanoparticle
photocatalyst, Environ. Sci. Technol., 43 (2009) 1534–1539.
- A.H. Fostier, M.S.S. Pereira, S. Rath, J.R. Guimaraes, Arsenic
removal from water employing heterogeneous photocatalysis
with TiO2 immobilized in PET bottles, Chemosphere,
72 (2008) 319–324.
- S. Yao, Y. Jia, Z. Shi, S. Zhao, Photocatalytic oxidation of
arsenite by a composite of titanium dioxide and activated
carbon fiber, J. Photochem. Photobiol., 86 (2010) 1215–1221.
- N. Rivera-Reyna, L. Hinojosa-Reyes, J.L. Guzmán-Mar, Y. Cai,
K. O’Shea, A. Hernández-Ramírez, Photocatalytical removal
of inorganic and organic arsenic species from aqueous solution
using zinc oxide semiconductor, Photochem. Photobiol. Sci.,
12 (2013) 53–59.
- Q. Tian, J. Zhuang, J. Wang, L. Xie, P. Liu, Novel photocatalyst,
Bi2Sn2O7, for photooxidation of As(III) under visible-light
irradiation, Appl. Catal., A, 425–426 (2012) 74–78.
- C.E. Barrera-Diaz, V. Lugo-Lugo, B. Bilyeu, A review of
chemical, electrochemical and biological methods for aqueous
Cr(VI) reduction, J. Hazard. Mater., 223–224 (2012)1–12.
- J.K. Yang, S.M. Lee, M. Farrokhi, O. Giahi, M.S. Siboni,
Photocatalytic removal of Cr(VI) with illuminated TiO2, Desal.
Water Treat., 46 (2012) 375–380.
- K. Kabra, R. Chaudhary, R.L. Sawhney, Application of solar
photocatalytic treatment to industrial wastewater from
a chrome plating unit, Int. J. Green Energy, 6 (2009) 83–91.
- X. Liu, T. Lv, Y. Liu, L. Pan, Z. Sun, TiO2–Au composite for
efficient UV photocatalytic reduction of Cr(VI), Desal. Water
Treat., 51 (2013) 3889–3895.
- R. Delgado-Balderas, L. Hinojosa-Reyes, J.L. Guzman-Mar,
M.T. Garza-Gonzalez, U.J. Lopez-Chuken,
A. Hernandez-Ramirez, Photocatalytic reduction of Cr(VI) from agricultural
soil column leachates using zinc oxide under UV light
irradiation, Environ. Technol., 33 (2012) 2673–2680.
- M.A. Behnajady, N. Mansoriieh, N. Modirshahla, M. Shokri,
Influence of operational parameters and kinetics analysis on
the photocatalytic reduction of Cr(VI) by immobilized ZnO,
Environ. Technol., 33 (2012) 265–271.
- X. Liu, T. Lv, L. Pan, Z. Sun, C.Q. Sun, Microwave-assisted
synthesis of ZnO for photocatalytic reduction of Cr(VI)
in aqueous solution, Desal. Water Treat., 42 (2012) 216–221.
- X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun,
C. Sun, UV-assisted photocatalytic synthesis of ZnO-reduced
graphene oxide composites with enhanced photocatalytic
activity in reduction of Cr(VI), Chem. Eng. J., 183 (2012)
238–243.
- J.C. Yu, W. Ho, J. Lin, H. Yip, P.K. Wong, Photocatalytic
activity, antibacterial effect, and photoinduced hydrophilicity
of TiO2 films coated on a stainless steel substrate, Environ. Sci.
Technol., 37 (2003) 2296–2301.
- J. Lonnen, S. Kilvington, S.C. Kehoe, F. Al-Touati,
K.G. McGuigan, Solar and photocatalytic disinfection of
protozoan, fungal and bacterial microbes in drinking water,
Water Res., 39 (2005) 877–883.
- Y. Liu, X. Wang, F. Yang, X. Yang, Excellent antimicrobial
properties of mesoporous anatase TiO2 and Ag/TiO2 composite
films, Microporous Mesoporous Mater., 114 (2008) 431–439.
- O. Akhavan, Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar
light irradiation, J. Colloid Interface Sci., 336 (2009) 117–124.
- P. Bhadra, M.K. Mitra, G.C. Das, R. Dey, S. Mukherjee,
Interaction of chitosan capped ZnO nanorods with Escherichia
coli, Mater. Sci. Eng., C, 31 (2011) 929–937.
- M. Eskandari, N. Haghighi, V. Ahmadi, F. Haghighi,
S.R. Mohammadi, Growth and investigation of antifungal
properties of ZnO nanorod arrays on the glass, Physica B,
406 (2011) 112–114.
- R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free
preparation of macro/mesoporous g-C3N4/TiO2 heterojunction
photocatalysts with enhanced visible light photocatalytic
activity, Appl. Catal., B, 187 (2016) 47–58.
- X. Zeng, Z. Wang, N. Meng, D.T. McCarthy, A. Deletic,
J.H. Pan, X. Zhang, Highly dispersed TiO2 nanocrystals
and carbon dots on reduced graphene oxide: ternary nanocomposites
for accelerated photocatalytic water disinfection,
Appl. Catal., B, 202 (2017) 33–41.
- S.F. Anis, R. Hashaikeh, N. Hilal, Functional materials in
desalination: a review, Desalination, 468 (2019) 114077,
doi: 10.1016/j.desal.2019.114077.
- C. Pablos, J. Marugán, R. van Grieken, E. Serrano, Emerging
micropollutant oxidation during disinfection processes using
UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2, Water
Res., 47 (2013) 1237–1245.
- J. Bogdan, J. Szczawiński, J. Zarzyńska, J. Pławińska-Czarnak,
Mechanizmy inaktywacji bakterii na powierzchniach
fotokatalitycznych, Med. Weter., 70 (2014) 657–662 (in Polish).
- M.J. Benotti, B.D. Stanford, E.C. Wert, S.A. Snyder, Evaluation
of a photocatalytic reactor membrane pilot system for the
removal of pharmaceuticals and endocrine disrupting
compounds from water, Water Res., 43 (2009) 1513–1522.
- Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, P.J.J. Li,
D. Alvarez, Antimicrobial nanomaterials for water disinfection
and microbial control: potential applications and
implications, Water Res., 42 (2008) 4591–4602.