References

  1. B. Gupta, T. Kumar Mandraha, P. Edla, M. Pandya, Thermal modeling and efficiency of solar water distillation: a review, Am. J. Eng. Res., 2 (2013) 203–213.
  2. G.N. Tiwari, H.N. Singh, R. Tripathi, Present status of solar distillation, Sol. Energy, 75 (2003) 367–373.
  3. H. Maddah, A. Chogle, Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation, Appl. Water Sci., 7 (2016) 2637–2651.
  4. H.A. Maddah, A.M. Chogle, Applicability of low pressure membranes for wastewater treatment with cost study analyses, Membr. Water Treat., 6 (2015) 477–488.
  5. K. Sampathkumar, T.V. Arjunan, P. Pitchandi, P. Senthilkumar, Active solar distillation—a detailed review, Renewable Sustainable Energy Rev., 14 (2010) 1503–1526.
  6. E. Cuce, P.M. Cuce, A. Saxena, T. Guclu, A.B. Besir, Performance analysis of a novel solar desalination system – Part 1: The unit with sensible energy storage and booster reflector without thermal insulation and cooling system, Sustainable Energy Technol. Assess., 37 (2020) 100566, doi: 10.1016/j. seta.2019.100566.
  7. T. Arunkumar, K. Vinothkumar, A. Ahsan, R. Jayaprakash, S. Kumar, Experimental study on various solar still designs, ISRN Renewable Energy, 2012 (2012) 1–10.
  8. D. Kumar, P. Himanshu, Z. Ahmad, Performance analysis of single slope solar still, Int. J. Mech. Robot. Res., 3 (2013) 66–72.
  9. P. Kalita, A. Dewan, S. Borah, A review on recent developments in solar distillation units, Sadhana – Acad. Proc. Eng. Sci., 41 (2016) 203–223.
  10. A. Saxena, N. Deval, A high rated solar water distillation unit for solar homes, J. Eng. (United Kingdom), 2016 (2016) 1–8.
  11. O.O. Badran, M.M. Abu-Khader, Evaluating thermal performance of a single slope solar still, J. Heat Mass Transfer, 43 (2007) 985–995.
  12. Y. Wang, A.W. Kandeal, A. Swidan, S.W. Sharshir, G.B. Abdelaziz, M.A. Halim, A.E. Kabeel, N. Yang, Prediction of tubular solar still performance by machine learning integrated with Bayesian optimization algorithm, Appl. Therm. Eng., 184 (2021) 116233, doi: 10.1016/j.applthermaleng.2020.116233.
  13. H.E.S. Fath, M. El-Samanoudy, K. Fahmy, A. Hassabou, Thermal-economic analysis and comparison between pyramidshaped and single-slope solar still configurations, Desalination, 159 (2003) 69–79.
  14. H.A. Maddah, V. Berry, S.K. Behura, Cuboctahedral stability in Titanium halide perovskites via machine learning, Comput. Mater. Sci., 173 (2020) 109415, doi: 10.1016/j.commatsci. 2019.109415.
  15. H.A. Maddah, V. Berry, S.K. Behura, Biomolecular photosensitizers for dye-sensitized solar cells: recent developments and critical insights, Renewable Sustainable Energy Rev., 121 (2020) 109678, doi:10.1016/j.rser.2019.109678.
  16. A.J.C. Trappey, P.P.J. Chen, C.V. Trappey, L. Ma, A machine learning approach for solar power technology review and patent evolution analysis, Appl. Sci., 9 (2019) 1478, doi: 10.3390/app9071478.
  17. A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: a tutorial, Computer, 29 (1996) 31–44.
  18. P. Gao, L. Zhang, K. Cheng, H. Zhang, A new approach to performance analysis of a seawater desalination system by an artificial neural network, Desalination, 205 (2007) 147–155.
  19. M.S.S. Abujazar, S. Fatihah, I.A. Ibrahim, A.E. Kabeel, S. Sharil, Productivity modelling of a developed inclined stepped solar still system based on actual performance and using a cascaded forward neural network model,
    J. Cleaner Prod., 170 (2018) 147–159.
  20. Y. Gong, X.L. Wang, L.X. Yu, Process simulation of desalination by electrodialysis of an aqueous solution containing a neutral solute, Desalination, 172 (2005) 157–172.
  21. H. Ben Bacha, T. Damak, M. Bouzguenda, A.Y. Maalej, H.B. Ben Dhia, A methodology to design and predict operation of a solar collector for a solar-powered desalination unit using the SMCEC principle, Desalination, 156 (2003) 305–313.
  22. X. Wang, K.C. Ng, Experimental investigation of an adsorption desalination plant using low-temperature waste heat, Appl. Therm. Eng., 25 (2005) 2780–2789.
  23. G. Yuan, L. Zhang, H. Zhang, Experimental research of an integrative unit for air-conditioning and desalination, Desalination, 182 (2005) 511–516.
  24. A.F. Mashaly, A.A. Alazba, MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment, Comput. Electron. Agric., 122 (2016) 146–155.
  25. A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, M.A. Mattar, Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment, Sol. Energy, 118 (2015) 41–58.
  26. G.M. Ayoub, L. Malaeb, Developments in solar still desalination systems: a critical review, Crit. Rev. Environ. Sci. Technol., 42 (2012) 2078–2112.
  27. R.S. Adhikari, A. Kumar, G.D. Sootha, Simulation studies on a multi-stage stacked tray solar still, Sol. Energy, 54 (1995) 317–325.
  28. R.S. Adhikari, A. Kumar, M.S. Sodha, Thermal performance of a multi‐effect diffusion solar still, Int. J. Energy Res., 15 (1991) 769–779.
  29. H.A. Maddah, Modeling and designing of a novel lab-scale passive solar still, J. Eng. Technol. Sci., 51 (2019) 303–322.
  30. H.A. Maddah, Highly efficient solar still based on polystyrene, Int. J. Innov. Technol. Explor. Eng., 8 (2019) 3423–3425.
  31. A.F. Mashaly, A.A. Alazba, Neural network approach for predicting solar still production using agricultural drainage as a feedwater source, Desal. Water Treat., 59 (2016) 28646–28660.
  32. S.V. Kumbhar, Double slope solar still distillate output data set for conventional still and still with or without reflectors and PCM using high TDS water samples, Data Brief, 24 (2019) 103852, doi:10.1016/j.dib.2019.103852.
  33. H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive power of machine learning for optimizing solar water heater performance: the potential application of high-throughput screening, Int. J. Photoenergy, 2017 (2017) 1–10.
  34. H.S. Aybar, A Review of Desalination by Solar Still, In: Solar Desalination for the 21st Century, NATO Security through Science Series C: Environmental Security, 2007, pp. 207–214, doi: 10.1007/978-1-4020-5508-9_15.
  35. E. Isaksson, Solar Power Forecasting with Machine Learning Techniques, KTH Royal Institute of Technology School of Engineering Sciences, Degree Project in Mathematics Second Cycle, 30 Credits, Stockholm, Sweden, 2018, pp. 1–46.
  36. J. Li, B. Pradhan, S. Gaur, J. Thomas, Predictions and strategies learned from machine learning to develop
    high-performing perovskite solar cells, Adv. Energy Mater., 9 (2019) 1901891, doi: 10.1002/aenm.201901891.
  37. E. Mathioulakis, K. Voropoulos, V. Belessiotis, Modeling and prediction of long-term performance of solar stills, Desalination, 122 (1999) 85–93.
  38. K. Voropoulos, E. Mathioulakis, V. Belessiotis, Analytical simulation of energy behavior of solar stills and experimental validation, Desalination, 153 (2003) 87–94.
  39. N.S.L. Srivastava, M. Din, G.N. Tiwari, Performance evaluation of distillation-cum-greenhouse for a warm and humid climate, Desalination, 128 (2000) 67–80.
  40. A. Sohani, S. Hoseinzadeh, S. Samiezadeh, I. Verhaert, Machine learning prediction approach for dynamic performance modeling of an enhanced solar still desalination system, J. Therm. Anal. Calorim., (2021) 1–12, doi:10.1007/s10973-021-10744-z.
  41. University of Leeds, Stepwise Linear Regression: School Of Geography. Available at: http://www.geog.leeds.ac.uk/courses/ other/statistics/spss/stepwise/
  42. N.R. Draper, H. Smith, Applied Regression Analysis, 3rd ed., John Wiley & Sons, United Kingdom, 2014.
  43. Guru99, R Simple, Multiple Linear and Stepwise Regression, 2020. Available at: https://www.guru99.com/r-simple-multiplelinear-regression.html
  44. P. Paisitkriangkrai, Linear Regression and Support Vector Regression, The University of Adelaide, 2012. Available at: https://cs.adelaide.edu.au/~chhshen/teaching/ML_SVR.pdf
  45. V.N. Vapnik, The Nature of Statistical Learning Theory, 1995. Available at: https://www.dais.unive.it/~pelillo/Didattica/ Artificial%20Intelligence/Old%20Stuff/2015–2016/Slides/SLT. pdf
  46. H. Wang, D. Xu, Parameter selection method for support vector regression based on adaptive fusion of the mixed Kernel function, J. Control Sci. Eng., 2017 (2017) 1–12.
  47. MathWorks, Understanding Support Vector Machine Regression, 2020. Available at: https://www.mathworks.com/ help/stats/understanding-support-vector-machine-regression. html
  48. S. Ghassem Pour, F. Girosi, Joint Prediction of Chronic Conditions Onset: Comparing Multivariate Probits with Multiclass Support Vector Machines, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, pp. 185–195.
  49. S. Sayad, Decision Tree – Regression, Data Science: Predicting the Future, Modeling & Regression. Available at: https://www. saedsayad.com/decision_tree_reg.htm
  50. Frontline Solvers – Frontline Systems, Regression Trees, 2020. Available at: https://www.solver.com/regression-trees
  51. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and regression trees, Taylor & Francis Group, Boca Raton, 2017.
  52. J. Elith, J.R. Leathwick, T. Hastie, A working guide to boosted regression trees, J. Animal Ecol., 77 (2008) 802–813.
  53. Mathworks, Statistics and Machine Learning ToolboxTM User’s Guide R2017a, MatLab, 2017.
  54. S.B. Kotsiantis, Supervised machine learning: a review of classification techniques, Informatica (Ljubljana), 31 (2007) 249–268.
  55. Y. Baştanlar, M. Ozuysal, Introduction to Machine Learning: miRNomics: MicroRNA Biology and Computational Analysis, Springer Nature, Switzerland, 2014.
  56. O. Simeone, A brief introduction to machine learning for engineers, IEEE Trans. Cognit. Commun. Networking, 4 (2018) 648–664.
  57. R. Pillai, A.T. Libin, M. Mani, Study into solar-still performance under sealed and unsealed conditions, Int. J. Low-Carbon Technol., 10 (2015) 354–364.
  58. M.M. Rahman, B.K. Bala, Modelling of jute production using artificial neural networks, Biosyst. Eng., 105 (2010) 350–356.
  59. M. Zangeneh, M. Omid, A. Akram, A comparative study between parametric and artificial neural networks approaches for economical assessment of potato production in Iran, Spanish J. Agric. Res., 3 (2011) 661–671.
  60. A.A. Alazba, M.A. Mattar, M.N. ElNesr, M.T. Amin, Field assessment of friction head loss and friction correction factor equations, J. Irrig. Drain. Eng., 138 (2012) 166–176.