References
- B. Gupta, T. Kumar Mandraha, P. Edla, M. Pandya, Thermal
modeling and efficiency of solar water distillation: a review,
Am. J. Eng. Res., 2 (2013) 203–213.
- G.N. Tiwari, H.N. Singh, R. Tripathi, Present status of solar
distillation, Sol. Energy, 75 (2003) 367–373.
- H. Maddah, A. Chogle, Biofouling in reverse osmosis:
phenomena, monitoring, controlling and remediation, Appl.
Water Sci., 7 (2016) 2637–2651.
- H.A. Maddah, A.M. Chogle, Applicability of low pressure
membranes for wastewater treatment with cost study analyses,
Membr. Water Treat., 6 (2015) 477–488.
- K. Sampathkumar, T.V. Arjunan, P. Pitchandi, P. Senthilkumar,
Active solar distillation—a detailed review, Renewable
Sustainable Energy Rev., 14 (2010) 1503–1526.
- E. Cuce, P.M. Cuce, A. Saxena, T. Guclu, A.B. Besir, Performance
analysis of a novel solar desalination system – Part 1: The
unit with sensible energy storage and booster reflector
without thermal insulation and cooling system, Sustainable
Energy Technol. Assess., 37 (2020) 100566, doi: 10.1016/j.
seta.2019.100566.
- T. Arunkumar, K. Vinothkumar, A. Ahsan, R. Jayaprakash,
S. Kumar, Experimental study on various solar still designs,
ISRN Renewable Energy, 2012 (2012) 1–10.
- D. Kumar, P. Himanshu, Z. Ahmad, Performance analysis of
single slope solar still, Int. J. Mech. Robot. Res., 3 (2013) 66–72.
- P. Kalita, A. Dewan, S. Borah, A review on recent developments
in solar distillation units, Sadhana – Acad. Proc. Eng. Sci.,
41 (2016) 203–223.
- A. Saxena, N. Deval, A high rated solar water distillation unit
for solar homes, J. Eng. (United Kingdom), 2016 (2016) 1–8.
- O.O. Badran, M.M. Abu-Khader, Evaluating thermal
performance of a single slope solar still, J. Heat Mass Transfer,
43 (2007) 985–995.
- Y. Wang, A.W. Kandeal, A. Swidan, S.W. Sharshir,
G.B. Abdelaziz, M.A. Halim, A.E. Kabeel, N. Yang, Prediction of
tubular solar still performance by machine learning integrated
with Bayesian optimization algorithm, Appl. Therm. Eng.,
184 (2021) 116233, doi: 10.1016/j.applthermaleng.2020.116233.
- H.E.S. Fath, M. El-Samanoudy, K. Fahmy, A. Hassabou,
Thermal-economic analysis and comparison between pyramidshaped
and single-slope solar still configurations, Desalination,
159 (2003) 69–79.
- H.A. Maddah, V. Berry, S.K. Behura, Cuboctahedral stability
in Titanium halide perovskites via machine learning, Comput.
Mater. Sci., 173 (2020) 109415, doi: 10.1016/j.commatsci.
2019.109415.
- H.A. Maddah, V. Berry, S.K. Behura, Biomolecular
photosensitizers for dye-sensitized solar cells: recent developments
and critical insights, Renewable Sustainable Energy Rev.,
121 (2020) 109678, doi:10.1016/j.rser.2019.109678.
- A.J.C. Trappey, P.P.J. Chen, C.V. Trappey, L. Ma, A machine
learning approach for solar power technology review and
patent evolution analysis, Appl. Sci., 9 (2019) 1478, doi: 10.3390/app9071478.
- A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks:
a tutorial, Computer, 29 (1996) 31–44.
- P. Gao, L. Zhang, K. Cheng, H. Zhang, A new approach to
performance analysis of a seawater desalination system by an
artificial neural network, Desalination, 205 (2007) 147–155.
- M.S.S. Abujazar, S. Fatihah, I.A. Ibrahim, A.E. Kabeel, S. Sharil,
Productivity modelling of a developed inclined stepped solar
still system based on actual performance and using a cascaded
forward neural network model,
J. Cleaner Prod., 170 (2018)
147–159.
- Y. Gong, X.L. Wang, L.X. Yu, Process simulation of desalination
by electrodialysis of an aqueous solution containing a neutral
solute, Desalination, 172 (2005) 157–172.
- H. Ben Bacha, T. Damak, M. Bouzguenda, A.Y. Maalej,
H.B. Ben Dhia, A methodology to design and predict operation
of a solar collector for a solar-powered desalination unit using
the SMCEC principle, Desalination, 156 (2003) 305–313.
- X. Wang, K.C. Ng, Experimental investigation of an adsorption
desalination plant using low-temperature waste heat, Appl.
Therm. Eng., 25 (2005) 2780–2789.
- G. Yuan, L. Zhang, H. Zhang, Experimental research of
an integrative unit for air-conditioning and desalination,
Desalination, 182 (2005) 511–516.
- A.F. Mashaly, A.A. Alazba, MLP and MLR models for
instantaneous thermal efficiency prediction of solar still under
hyper-arid environment, Comput. Electron. Agric., 122 (2016)
146–155.
- A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, M.A. Mattar,
Predictive model for assessing and optimizing solar still
performance using artificial neural network under hyper arid
environment, Sol. Energy, 118 (2015) 41–58.
- G.M. Ayoub, L. Malaeb, Developments in solar still desalination
systems: a critical review, Crit. Rev. Environ. Sci. Technol., 42
(2012) 2078–2112.
- R.S. Adhikari, A. Kumar, G.D. Sootha, Simulation studies on
a multi-stage stacked tray solar still, Sol. Energy, 54 (1995)
317–325.
- R.S. Adhikari, A. Kumar, M.S. Sodha, Thermal performance of
a multi‐effect diffusion solar still, Int. J. Energy Res., 15 (1991)
769–779.
- H.A. Maddah, Modeling and designing of a novel lab-scale
passive solar still, J. Eng. Technol. Sci., 51 (2019) 303–322.
- H.A. Maddah, Highly efficient solar still based on polystyrene,
Int. J. Innov. Technol. Explor. Eng., 8 (2019) 3423–3425.
- A.F. Mashaly, A.A. Alazba, Neural network approach for
predicting solar still production using agricultural drainage as
a feedwater source, Desal. Water Treat., 59 (2016) 28646–28660.
- S.V. Kumbhar, Double slope solar still distillate output data
set for conventional still and still with or without reflectors
and PCM using high TDS water samples, Data Brief, 24 (2019)
103852, doi:10.1016/j.dib.2019.103852.
- H. Li, Z. Liu, K. Liu, Z. Zhang, Predictive power of machine
learning for optimizing solar water heater performance: the
potential application of high-throughput screening, Int. J.
Photoenergy, 2017 (2017) 1–10.
- H.S. Aybar, A Review of Desalination by Solar Still, In: Solar
Desalination for the 21st Century, NATO Security through
Science Series C: Environmental Security, 2007, pp. 207–214,
doi: 10.1007/978-1-4020-5508-9_15.
- E. Isaksson, Solar Power Forecasting with Machine Learning
Techniques, KTH Royal Institute of Technology School of
Engineering Sciences, Degree Project in Mathematics Second
Cycle, 30 Credits, Stockholm, Sweden, 2018, pp. 1–46.
- J. Li, B. Pradhan, S. Gaur, J. Thomas, Predictions and strategies
learned from machine learning to develop
high-performing
perovskite solar cells, Adv. Energy Mater., 9 (2019) 1901891, doi:
10.1002/aenm.201901891.
- E. Mathioulakis, K. Voropoulos, V. Belessiotis, Modeling and
prediction of long-term performance of solar stills, Desalination,
122 (1999) 85–93.
- K. Voropoulos, E. Mathioulakis, V. Belessiotis, Analytical
simulation of energy behavior of solar stills and experimental
validation, Desalination, 153 (2003) 87–94.
- N.S.L. Srivastava, M. Din, G.N. Tiwari, Performance evaluation
of distillation-cum-greenhouse for a warm and humid climate,
Desalination, 128 (2000) 67–80.
- A. Sohani, S. Hoseinzadeh, S. Samiezadeh, I. Verhaert, Machine
learning prediction approach for dynamic performance
modeling of an enhanced solar still desalination system, J. Therm.
Anal. Calorim., (2021) 1–12, doi:10.1007/s10973-021-10744-z.
- University of Leeds, Stepwise Linear Regression: School Of
Geography. Available at: http://www.geog.leeds.ac.uk/courses/
other/statistics/spss/stepwise/
- N.R. Draper, H. Smith, Applied Regression Analysis, 3rd ed.,
John Wiley & Sons, United Kingdom, 2014.
- Guru99, R Simple, Multiple Linear and Stepwise Regression,
2020. Available at: https://www.guru99.com/r-simple-multiplelinear-regression.html
- P. Paisitkriangkrai, Linear Regression and Support Vector
Regression, The University of Adelaide, 2012. Available at:
https://cs.adelaide.edu.au/~chhshen/teaching/ML_SVR.pdf
- V.N. Vapnik, The Nature of Statistical Learning Theory, 1995.
Available at: https://www.dais.unive.it/~pelillo/Didattica/
Artificial%20Intelligence/Old%20Stuff/2015–2016/Slides/SLT.
pdf
- H. Wang, D. Xu, Parameter selection method for support
vector regression based on adaptive fusion of the mixed Kernel
function, J. Control Sci. Eng., 2017 (2017) 1–12.
- MathWorks, Understanding Support Vector Machine
Regression, 2020. Available at: https://www.mathworks.com/
help/stats/understanding-support-vector-machine-regression.
html
- S. Ghassem Pour, F. Girosi, Joint Prediction of Chronic Conditions
Onset: Comparing Multivariate Probits with Multiclass
Support Vector Machines, Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2016, pp. 185–195.
- S. Sayad, Decision Tree – Regression, Data Science: Predicting
the Future, Modeling & Regression. Available at: https://www.
saedsayad.com/decision_tree_reg.htm
- Frontline Solvers – Frontline Systems, Regression Trees, 2020.
Available at: https://www.solver.com/regression-trees
- L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification
and regression trees, Taylor & Francis Group, Boca Raton, 2017.
- J. Elith, J.R. Leathwick, T. Hastie, A working guide to boosted
regression trees, J. Animal Ecol., 77 (2008) 802–813.
- Mathworks, Statistics and Machine Learning ToolboxTM User’s
Guide R2017a, MatLab, 2017.
- S.B. Kotsiantis, Supervised machine learning: a review of
classification techniques, Informatica (Ljubljana), 31 (2007)
249–268.
- Y. Baştanlar, M. Ozuysal, Introduction to Machine Learning:
miRNomics: MicroRNA Biology and Computational Analysis,
Springer Nature, Switzerland, 2014.
- O. Simeone, A brief introduction to machine learning for
engineers, IEEE Trans. Cognit. Commun. Networking, 4 (2018)
648–664.
- R. Pillai, A.T. Libin, M. Mani, Study into solar-still performance
under sealed and unsealed conditions, Int. J. Low-Carbon
Technol., 10 (2015) 354–364.
- M.M. Rahman, B.K. Bala, Modelling of jute production
using artificial neural networks, Biosyst. Eng., 105 (2010)
350–356.
- M. Zangeneh, M. Omid, A. Akram, A comparative study
between parametric and artificial neural networks approaches
for economical assessment of potato production in Iran, Spanish
J. Agric. Res., 3 (2011) 661–671.
- A.A. Alazba, M.A. Mattar, M.N. ElNesr, M.T. Amin, Field
assessment of friction head loss and friction correction factor
equations, J. Irrig. Drain. Eng., 138 (2012) 166–176.