References

  1. M. Filella, N. Belzile, Y.W. Chen, Antimony in the environment: a review focused on natural waters
    I. Occurrence, Earth Sci. Rev., 57 (2002) 125–176.
  2. M. He, X. Wang, F. Wu, Z. Fu, Antimony pollution in China, Sci. Total Environ., 421 (2012) 41–50.
  3. S. Sundar, J. Chakravarty, Antimony toxicity, Int. J. Environ. Res. Public Health, 7 (2010) 4267–4277.
  4. Z. Zhang, N. Zhang, H. Li, Y. Lu, Z. Yang, Potential health risk assessment for inhabitants posed by heavy metals in rice in Zijiang River basin, Hunan Province, China, Environ. Sci. Pollut. Res., 27 (2020) 24013–24024.
  5. M.C. He, N.N. Wang, X.J. Long, C.J. Zhang, C.L. Ma, Q.Y. Zhong, A.H. Wang, Y. Wang, A. Pervaiz, J. Shan, Antimony speciation in the environment: recent advances in understanding the biogeochemical processes and ecological effects, J. Environ. Sci., 75 (2019) 14–39.
  6. Y.L. Liu, Z.M. Lou, K.L. Yang, Z.N. Wang, C.C. Zhou, Y.Z. Li, Z. Cao, X.H. Xu, Coagulation removal of Sb(V) from textile wastewater matrix with enhanced strategy: comparison study and mechanism analysis, Chemosphere, 237 (2019) 124494, doi: 10.1016/j.chemosphere.2019.124494.
  7. L. Meng, M. Wu, H. Chen, Y. Xi, M. Huang, X. Luo, Rejection of antimony in dyeing and printing wastewater by forward osmosis, Sci. Total Environ., 745 (2020) 141015, doi: 10.1016/j.scitotenv.2020.141015.
  8. W. Zhao, B. Ren, A. Hursthouse, Z. Wang, Facile synthesis of nanosheet-assembled gamma-Fe2O3 magnetic microspheres and enhanced Sb(III) removal, Environ. Sci. Pollut. Res., 28 (2021) 19822–19837.
  9. X. He, X. Min, T. Peng, Y. Ke, F. Zhao, M. Sillanpaa, Y. Wang, Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight, Environ. Sci. Pollut. Res., 27 (2020) 16484–16495.
  10. A.S.C. Chen, L. Wang, T.J. Sorg, D.A. Lytle, Removing arsenic and co-occurring contaminants from drinking water by fullscale ion exchange and point-of-use/point-of-entry reverse osmosis systems, Water Res., 172 (2020) 115455, doi: 10.1016/j.watres.2019.115455.
  11. N. Van Khanh, Y. Park, T. Lee, Microbial antimonate reduction with a solid-state electrode as the sole electron donor: a novel approach for antimony bioremediation, J. Hazard. Mater., 377 (2019) 179–185.
  12. J. Wen, Y. Fang, G. Zeng, Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: a review of studies from the last decade, Chemosphere, 201 (2018) 627–643.
  13. T.A. Saleh, A. Sari, M. Tuzen, Effective adsorption of antimony(III) from aqueous solutions
    by polyamide-graphene composite as a novel adsorbent, Chem. Eng. J., 307 (2017) 230–238.
  14. J.M. Luo, X.B. Luo, J. Crittenden, J.H. Qu, Y.H. Bai, Y. Peng, J.H. Li, Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2), Environ. Sci. Technol., 49 (2015) 11115–11124.
  15. W. Xu, H. Wang, R. Liu, X. Zhao, J. Qu, The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide, J. Colloid Interface Sci., 363 (2011) 320–326.
  16. X. Guo, Z. Wu, M. He, X. Meng, X. Jin, N. Qiu, J. Zhang, Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure, J. Hazard. Mater., 276 (2014) 339–345.
  17. C. Wang, J. Luan, C. Wu, Metal-organic frameworks for aquatic arsenic removal, Water Res., 158 (2019) 370–382.
  18. W. Zhang, N. Li, T. Xiao, W.T. Tang, G.L. Xiu, Removal of antimonite and antimonate from water using Fe-based metalorganic frameworks: the relationship between framework structure and adsorption performance,
    J. Environ. Sci., 86 (2019) 213–224.
  19. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013) 1230444. doi: 10.1126/science.1230444.
  20. S. Sadeghian, H. Pourfakhar, M. Baghdadi, B. Aminzadeh, Application of sand particles modified
    with NH2-MIL-101(Fe) as an efficient visible-light photocatalyst for Cr(VI) reduction, Chemosphere, 268 (2021) 129365, doi: 10.1016/j.chemosphere.2020.129365.
  21. S.-W. Lv, J.-M. Liu, C.-Y. Li, N. Zhao, Z.-H. Wang, S. Wang, A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions, Chem. Eng. J., 375 (2019) 122111, doi: 10.1016/j.cej.2019.122111.
  22. Y.-R. Lee, K. Yu, S. Ravi, W.-S. Ahn, Selective adsorption of rare earth elements over functionalized Cr-MIL-101, ACS Appl. Mater. Interfaces, 10 (2018) 23918–23927.
  23. G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309 (2005) 2040–2042.
  24. D.Y. Hong, Y.K. Hwang, C. Serre, G. Ferey, J.S. Chang, Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis, Adv. Funct. Mater., 19 (2009) 1537–1552.
  25. L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, J. Fang, C. Wei, G. Liu, Post-functionalization of UiO-66-NH2 by
    2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water, J. Hazard. Mater., 368 (2019) 42–51.
  26. L. Ding, P. Shao, Y. Luo, X. Yin, S. Yu, L. Fang, L. Yang, J. Yang, X. Luo, Functionalization of UiO-66-NH2 with rhodanine via amidation: towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater, Chem. Eng. J., 382 (2020) 123009, doi: 10.1016/j.cej.2019.123009.
  27. S. Bernt, V. Guillerm, C. Serre, N. Stock, Direct covalent postsynthetic chemical modification of Cr-MIL-101 using nitrating acid, Chem. Commun., 47 (2011) 2838–2840.
  28. Y. Lin, C. Kong, L. Chen, Direct synthesis of aminefunctionalized MIL-101(Cr) nanoparticles and application for CO2 capture, RSC Adv., 2 (2012) 6417–6419.
  29. S.Y. Chong, T.T. Wang, L.C. Cheng, H.Y. Lv, M. Ji, Metalorganic framework MIL-101-NH2-supported acetate-based butylimidazolium ionic liquid as a highly efficient heterogeneous catalyst for the synthesis of
    3-Aryl-2-oxazolidinones, Langmuir, 35 (2019) 495–503.
  30. K. Kargosha, N. Shokoufi, J. Azad, Preconcentration and speciation of Sb(III) and Sb(V) with alumina mini column and determination by flame AAS, Atmos. Spectrosc., 28 (2007) 171–177.
  31. F. Moghimi, A.H. Jafari, H. Yoozbashizadeh, M. Askari, Adsorption behavior of Sb(III) in single and binary Sb(III)-Fe(II) systems on cationic ion exchange resin: adsorption equilibrium, kinetic and thermodynamic aspects, Trans. Nonferrous Met. Soc. China, 30 (2020) 236–248.
  32. P. Ni, R. Zuo, J. Wang, A. Zhou, Adsorption behavior of Sb(III) on iron-functionalized attapulgite in aqueous solution, Desal. Water Treat., 137 (2019) 22–33.
  33. W. Zhang, R.-Z. Zhang, Y.-Q. Huang, J.-M. Yang, Effect of the synergetic interplay between the electrostatic interactions, size of the dye molecules, and adsorption sites of MIL-101(Cr) on the adsorption of organic dyes from aqueous solutions, Cryst. Growth Des., 18 (2018) 7533–7540.
  34. X. Li, Y. Mao, K. Leng, G. Ye, Y. Sun, W. Xu, Synthesis of aminofunctionalized MIL-101(Cr) with large surface area, Mater. Lett., 197 (2017) 192–195.
  35. S.-W. Lv, J.-M. Liu, H. Ma, Z.-H. Wang, C.-Y. Li, N. Zhao, S. Wang, Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs, Microporous Mesoporous Mater., 282 (2019) 179–187.
  36. W. Zhang, R.-Z. Zhang, Y. Yin, J.-M. Yang, Superior selective adsorption of anionic organic dyes by MIL-101 analogs: regulation of adsorption driving forces by free amino groups in pore channels, J. Mol. Liq., 302 (2020) 112616, doi: 10.1016/j.molliq.2020.112616.
  37. J.M. Park, S.H. Jhung, A remarkable adsorbent for removal of bisphenol S from water: aminated metal-organic framework, MIL-101-NH2, Chem. Eng. J., 396 (2020) 125224, doi: 10.1016/j.cej.2020.125224.
  38. M.-W. Zhang, K.-Y.A. Lin, C.-F. Huang, S. Tong, Enhanced degradation of toxic azo dye, amaranth, in water using oxone catalyzed by MIL-101-NH2 under visible light irradiation, Sep. Purif. Technol., 227 (2019) 115632, doi:10.1016/j.seppur.2019.05.074.
  39. X. Huang, Q. Hu, L. Gao, Q. Hao, P. Wang, D. Qin, Adsorption characteristics of metal-organic framework
    MIL-101(Cr) towards sulfamethoxazole and its persulfate oxidation regeneration, RSC Adv., 8 (2018) 27623–27630.
  40. L.K. Fu, S.X. Wang, G. Lin, L.B. Zhang, Q.M. Liu, H.H. Zhou, C.X. Kang, S.Y. Wan, H.W. Li, S. Wen, Post-modification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(II) in aqueous media, J. Cleaner Prod., 229 (2019) 470–479.
  41. J.-Y. Zhang, N. Zhang, L. Zhang, Y. Fang, W. Deng, M. Yu, Z. Wang, L. Li, X. Liu, J. Li, Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr) nanoparticles by a facile coordination-based post-synthetic strategy and X-ray absorption spectroscopy studies, Sci. Rep., 5 (2015) 13514, doi: 10.1038/srep13514.
  42. Y. Chen, J. Lyu, Y. Wang, T. Chen, Y. Tian, P. Bai, X. Guo, Synthesis, characterization, adsorption, and isotopic separation studies of pyrocatechol-modified MCM-41 for efficient boron removal, Ind. Eng. Chem. Res., 58 (2019) 3282–3292.
  43. Y.H. Tu, L.F. Ren, Y.X. Lin, J.H. Shao, Y.L. He, X.P. Gao, Z.M. Shen, Adsorption of antimonite and antimonate from aqueous solution using modified polyacrylonitrile with an ultrahigh percentage of amidoxime groups,
    J. Hazard. Mater., 388 (2020) 121997, doi: 10.1016/j.jhazmat.2019.121997.
  44. Z. Zhao, X. Wang, C. Zhao, X. Zhu, S. Du, Adsorption and desorption of antimony acetate on sodium montmorillonite, J. Colloid Interface Sci., 345 (2010) 154–159.
  45. X.Y. He, X.B. Min, X.B.A. Luo, Efficient removal of antimony(III, V) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study, J. Chem. Eng. Data, 62 (2017) 1519–1529.
  46. Y. Leng, W. Guo, S. Su, C. Yi, L. Xing, Removal of antimony(III) from aqueous solution by graphene as an adsorbent, Chem. Eng. J., 211 (2012) 406–411.
  47. Z. Qi, H. Lan, T.P. Joshi, R. Liu, H. Liu, J. Qu, Enhanced oxidative and adsorptive capability towards antimony by copper-doping into magnetite magnetic particles, RSC Adv., 6 (2016) 66990–67001.
  48. Y. Yan, J.-s. Wang, S.-l. Chen, Y.-x. Bing, Q.-w. Guo, Z.-y. Duan, L. Xie, K.-c. Han, Effective removal of trace antimony(III) from aqueous solution by phosphonic acid-functionalized hollow mesoporous silica spheres as a novel adsorbent, Desal. Water Treat., 174 (2020) 230–239.
  49. A. Zhou, J. Wang, Removal of antimonite(III) from wastewater using sodium-alginate-modified Fe-attapulgite with sodium alginate beads, Desal. Water Treat., 168 (2019) 282–290.
  50. N.N. Xiong, P. Wan, G.C. Zhu, F.B. Xie, S.N. Xu, C.Q. Zhu, A.S. Hursthouse, Sb(III) removal from aqueous solution by a novel nano-modified chitosan (NMCS), Sep. Purif. Technol., 236 (2020 116266, doi:10.1016/j.seppur.2019.116266.
  51. J. Zhang, R.-j. Deng, B.-z. Ren, B. Hou, A. Hursthouse, Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony(III) from aqueous solution, Sci. Rep., 9 (2019) 13021, doi:10.1038/s41598-019-49679-9.
  52. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016) 7290–7304.
  53. Z. He, R. Liu, H. Liu, J. Qu, Adsorption of Sb(III) and Sb(V) on freshly prepared ferric hydroxide (FeOxHy), Environ. Eng. Sci., 32 (2015) 95–102.
  54. H.X. Luo, F.W. Cheng, L. Huelsenbeck, N. Smith, Comparison between conventional solvothermal and aqueous solutionbased production of UiO-66-NH2: life cycle assessment, technoeconomic assessment, and implications for CO2 capture and storage, J. Environ. Chem. Eng., 9 (2021) 105159, doi: 10.1016/j.jece.2021.105159.
  55. L. Huelsenbeck, H. Luo, P. Verma, J. Dane, R. Ho, E. Beyer, H. Hall, G.M. Geise, G. Giri, Generalized approach for rapid aqueous MOF synthesis by controlling solution pH, Cryst. Growth Des., 20 (2020) 6787–6795.
  56. C.A. Grande, R. Blom, A. Spjelkavik, V. Moreau, J. Payet, Lifecycle assessment as a tool for eco-design of
    metal-organic frameworks (MOFs), Sustainable Mater. Technol., 14 (2017) 11–18.