References

  1. I.M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dyecontaining effluents:
    a review, Bioresour. Technol., 58 (1996) 217–227.
  2. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  3. M.-S. Chiou, H.-Y. Li, Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads, J. Hazard. Mater., 93 (2002) 233–248.
  4. X.Y. Yang, B. Al-Duri, Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon, Chem. Eng. J., 83 (2001) 15–23.
  5. M.S. Mottaleb, D. Littlejohn, Application of an HPLC-FTIR modified thermospray interface for analysis of dye samples, Anal. Sci., 17 (2001) 429–434.
  6. S.M. Burkinshaw, O. Kabambe, Attempts to reduce water and chemical usage in the removal of bifunctional reactive dyes from cotton: Part 2 bis(vinyl sulfone), aminochlorotriazine/vinyl sulfone and bis(aminochlorotriazine/vinyl sulfone) dyes, Dyes Pigm., 88 (2011) 220–229.
  7. P.C. Vandevivere, R. Bianchi, W. Verstraete, Treatment and reuse of wastewater from the textile
    wet-processing industry: review of emerging technologies, J. Chem. Technol. Biotechnol., 72 (1998) 289–302.
  8. C. O’Neill, F.R. Hawkes, D.L. Hawkes, N.D. Lourenço, H.M. Pinheiro, W. Delée, Colour in textile effluents – sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 74 (1999) 1009–1018.
  9. A.J. Jafari, B. Kakavandi, R.R. Kalantary, H. Gharibi, A. Asadi, A. Azari, A.A. Babaei, A. Takdastan, Application of mesoporous magnetic carbon composite for reactive dyes removal: process optimization using response surface methodology, Korean J. Chem. Eng., 33 (2016) 2878–2890.
  10. Y. Ho, T. Chiang, Y. Hsueh, Removal of basic dye from aqueous solution using tree fern as a biosorbent, Process Biochem., 40 (2005) 119–124.
  11. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  12. L.D. Fiorentin, D.E.G. Trigueros, A.N. Módenes, F.R. Espinoza-Quiñones, N.C. Pereira, S.T.D. Barros, O.A.A. Santos, Biosorption of reactive blue 5G dye onto drying orange bagasse in batch system: kinetic and equilibrium modeling, Chem. Eng. J., 163 (2010) 68–77.
  13. C.P. Kaushik, R. Tuteja, N. Kaushik, J.K. Sharma, Minimization of organic chemical load in direct dyes effluent using low cost adsorbents, Chem. Eng. J., 155 (2009) 234–240.
  14. G.Z. Kyzas, A decolorization technique with spent “Greek Coffee” Grounds as zero-cost adsorbents for industrial textile wastewaters, Materials, 5 (2012) 2069–2087.
  15. G.Z. Kyzas, M. Kostoglou, A.A. Vassiliou, N.K. Lazaridis, Treatment of real effluents from dyeing reactor: experimental and modeling approach by adsorption onto chitosan, Chem. Eng. J., 168 (2011) 577–585.
  16. G.Z. Kyzas, N.K. Lazaridis, A.C. Mitropoulos, Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach, Chem. Eng. J., 189–190 (2012) 148–159.
  17. R.S. Juang, R.L. Tseng, F.C. Wu, S.H. Lee, Adsorption behavior of reactive dyes from aqueous solutions on chitosan, J. Chem. Technol. Biotechnol., 70 (1997) 391–399.
  18. D. Knorr, Dye binding properties of chitin and chitosan, J. Food Sci., 48 (1983) 36–37.
  19. G. Annadurai, L.Y. Ling, J.F. Lee, Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis, J. Hazard. Mater., 152 (2008) 337–346.
  20. S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.K. Guha, Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: binding mechanism, equilibrium and kinetics, Colloids Surf., A, 299 (2007) 146–152.
  21. F.A.A. Tirkistani, Thermal analysis of some chitosan Schiff bases, Polym. Degrad. Stab., 60 (1998) 67–70.
  22. J.E. dos Santos, E.R. Dockal, E´.T.G. Cavalheiro, Synthesis and characterization of Schiff bases from chitosan and salicylaldehyde derivatives, Carbohydr. Polym., 60 (2005) 277–282.
  23. A.M. Donia, A.A. Atia, K.Z. Elwakeel, Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff’s base derived from thiourea and glutaraldehyde, J. Hazard. Mater., 151 (2008) 372–379.
  24. H.M. Zalloum, Z. Al-Qodah, M.S. Mubarak, Copper adsorption on chitosan-derived Schiff bases, J. Macromol. Sci., Part A, 46 (2008) 46–57.
  25. E.A. Soliman, S.M. El-Kousy, H.M. Abd-Elbary, A.R. Abou-zeid, Low molecular weight chitosan-based Schiff bases: synthesis, characterization and antimicrobial activity, J. Food Technol., 8 (2013) 17–30.
  26. Y.N. Dai, P. Li, J.P. Zhang, A.Q. Wang, Q. Wei, Swelling characteristics and drug delivery properties of nifedipineloaded pH sensitive alginate–chitosan hydrogel beads, J. Biomed. Mater. Res. Part B, 86B (2008) 493–500.
  27. S.P. Ramnani, S. Sabharwal, Adsorption behavior of Cr(VI) onto radiation crosslinked chitosan and its possible application for the treatment of waste water containing Cr(VI), React. Funct. Polym., 66 (2006) 902–909.
  28. M.S. Mohy Eldin, A.I. Hashem, A.M. Omer, T.M. Tamer, Preparation, characterization and antimicrobial evaluation of novel cinnamyl chitosan Schiff base, Int. J. Adv. Res., 3 (2015) 741–755.
  29. A. Pawlak, M. Mucha, Thermogravimetric and FTIR studies of chitosan blends, Thermochim. Acta, 396 (2003) 153–166.
  30. L.S. Guinesi, E.T.G. Cavalheiro, The use of DSC curves to determine the acetylation degree of chitin/chitosan samples, Thermochim. Acta, 444 (2006) 128–133.
  31. F.A.A. Tirkistani, Thermal analysis of some chitosan Schiff bases, Polym. Degrad. Stab., 60 (1998) 67–70.
  32. M.A. Hassan, A.M. Omer, E. Abbas, W.M.A. Baset, T.M. Tamer, Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives, Sci. Rep., 8 (2018) 11416, doi: 10.1038/s41598-018-29650-w.
  33. J. Estrela dos Santos, E.R. Dockal, É.T.G. Cavalheiro, Thermal behavior of Schiff bases from chitosan, J. Therm. Anal. Calorim., 79 (2005) 243–248.
  34. T.M. Tamer, M.A. Hassan, A.M. Omer, K. Valachová, M.S. Mohy Eldin, M.N. Collins, L. Šoltés, Antibacterial and antioxidative activity of O-amine functionalized chitosan, Carbohydr. Polym., 169 (2017) 441–450.
  35. E. Assaad, A. Azzouz, D. Nistor, A.V. Ursu, T. Sajin, D.N. Miron, F. Monette, P. Niquette, R. Hausler, Metal removal through synergic coagulation–flocculation using an optimized chitosan– montmorillonite system, Appl. Clay Sci., 37 (2007) 258–274.
  36. E.M. El-Sayed, T.M. Tamer, A.M. Omer, M.S. Mohy Eldin, Development of novel chitosan Schiff base derivatives for cationic dye removal: Methyl orange model, Desal. Water Treat., 57 (2016) 22632–22645.
  37. A. Szyguła, E. Guibal, M.A. Palacın, M. Ruiz, A.M. Sastre, Removal of an anionic dye (Acid Blue 92) by coagulationflocculation using chitosan, J. Environ. Manage., 90 (2009) 2979–2986.
  38. B.H. Hameed, L.H. Chin, S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, 225 (2008) 185–198.
  39. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim. URSS, 12 (1940) 327–356.
  40. R.E. Khalifa, A.M. Omer, T.M. Tamer, W.M. Salem, M.S. Mohy Eldin, Removal of methylene blue dye from synthetic aqueous solutions using novel phosphonate cellulose acetate membranes: adsorption kinetic, equilibrium, and thermodynamic studies, Desal. Water Treat., 144 (2019) 272–285.
  41. H. Mahmoodian, O. Moradi, I. Tyagi, A. Maity, M. Asif, V.K. Gupta, Enhanced removal of Methyl orange from aqueous solutions by polyHEMA–chitosan-MWCNT nano-composite, J. Mol. Liq., 202 (2015) 189–198.
  42. L. Zhang, P. Hu, J. Wang, Q. Liu, R. Huang, Adsorption of Methyl orange (MO) by Zr(IV)-immobilized cross-linked chitosan/bentonite composite, Int. J. Biol. Macromol., 81 (2015) 818–827.
  43. T.K. Saha, N.C. Bhoumik, S. Karmaker, M.G. Ahmed, H. Ichikawa, Y. Fukumori, Adsorption of Methyl orange onto chitosan from aqueous solution, J. Water Resour. Prot., 2 (2010) 898–906.
  44. Y. Wang, G. Xia, C. Wu, J. Sun, R. Song, W. Huang, Porous chitosan doped with graphene oxide as highly effective adsorbent for Methyl orange and amido black 10B, Carbohydr. Polym., 115 (2015) 686–693.
  45. B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpää, Preparation and characterization of a novel
    chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl orange adsorption, Chem. Eng. J., 259 (2015) 1–10.
  46. M. Ozacar, I.A. Sengil, A kinetic study of metal complex dye sorption onto pinedust, Process Biochem., 40 (2005) 565–572.
  47. R.L. Tseng, Mesopore control of high surface area NaOH-activated carbon, J. Colloid Interface Sci., 303 (2006) 494–502.
  48. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
  49. K. Kannan, M.M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study, Dyes Pigm., 51 (2001) 25–40.
  50. M. Sarkar, P.K. Acharya, B. Bhaskar, Modeling the removal kinetics of some priority organic pollutants in water from diffusion and activation energy parameters, J. Colloid Interface Sci., 266 (2003) 28–32.
  51. G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies, Sep. Purif. Technol., 53 (2007) 97–110.
  52. S.M. Venkat, D.M. Indra, C.S. Vimal, Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution, Dyes Pigm., 73 (2007) 269–278.
  53. T.A. Khan, S. Dahiya, I. Ali, Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution, Appl. Clay Sci., 69 (2012) 58–66.
  54. G. Zhao, J. Li, X. Wang, Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets, Chem. Eng. J., 173 (2011) 185–190.
  55. M. Alkan, O. Demirbas, S.Ç.M. Dogan, Sorption of acid red 57 from aqueous solution onto sepiolite, J. Hazard. Mater., B116 (2004) 135–145.
  56. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York, 1985, pp. 523–524.
  57. B. Noroozi, G.A. Sorial, H. Bahrami, M. Arami, Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent—silkworm pupa, J. Hazard. Mater., 39 (2007) 167–174.
  58. I. Uzun, Kinetics of the adsorption of reactive dyes by chitosan, Dyes Pigm., 70 (2006) 76–83.
  59. W. Liu, S. Sun, Z. Cao, X. Zhang, K. Yao, W.W. Lu, An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes, Biomaterials, 26 (2005) 2705–11.
  60. G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processed using batch studies: a review of recent literature, Prog. Polym. Sci., 33 (2008) 399–447.
  61. S.A. Chaudhry, M. Ahmed, S.I. Siddiqui, S. Ahmed, Fe(III)-Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: application of isotherm, kinetic and thermodynamics, J. Mol. Liq., 224 (2016) 431–441.
  62. T. Jóźwiak, U. Filipkowska, P. Szymczyk, M. Kuczajowska-Zadrożna, A. Mielcarek, M. Zyśk, The influence of chitosan deacetylation degree on Reactive Black 5 sorption efficiency from aqueous solutions, Progress on Chemistry and Application of Chitin and its Derivatives, 21 (2016) 83–92, doi: 10.15259/PCACD.21.08.
  63. H. Hou, R. Zhou, P. Wu, L. Wu, Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite, Chem. Eng. J., 211–212 (2012) 336–342.
  64. A. Szyguła, E. Guibal, M.A. Palacın, M. Ruiz, A.M. Sastre, Removal of an anionic dye (Acid Blue 92) by coagulationflocculation using chitosan, J. Environ. Manage., 90 (2009) 2979–2986.
  65. M.S. Chiou, H.O. Pang-Yen, H.-Y. Li, Adsorption of anionic dyes in acid solutions using chemically crosslinked chitosan beads, Dyes Pigm., 60 (2004) 69–84.
  66. E.M. El-Sayed, T.M. Tamer, A.M. Omer, M.S. Mohy Eldin, Development of novel chitosan Schiff base derivatives for cationic dye removal: Methyl orange model, Desal. Water Treat., 57 (2016) 22632–22645.
  67. Y.S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 96 (2005) 1292–1296.
  68. M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption and structure of active carbons I. Adsorption of organic vapors, Zhurnal Fizicheskoi Khimii, 21 (1947) 1351–1362.
  69. N. Unlü, M. Ersoz, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions, J. Hazard. Mater., 136 (2006) 272–280.
  70. A. Mohammad, A.K.R. Rifaqat, A. Rais, A. Jameel, Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater, J. Hazard Mater., 79 (2000) 117–131.
  71. A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol., 56 (2001) 69–80.
  72. B.H. Hameed, L.H. Chin, S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, 225 (2008) 185–198.
  73. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Physiochim. URSS, 12 (1940) 327–356.
  74. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  75. N. Unlü, M. Ersoz, Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions, J. Hazard. Mater., 136 (2006) 272–280.