References

  1. R. Bayard, H. Benbelkacem, R. Gourdon, P. Buffière, Characterization of selected municipal solid waste components to estimate their biodegradability, J. Environ. Manage., 216 (2018) 4–12.
  2. A. Sánchez, A. Artola, T. Gea, R. Barrena, X. Font, A new paradigm for waste management of organic materials, Waste Manage., 42 (2015) 1–2.
  3. A. Cesaro, V. Belgiorno, M. Guida, Compost from organic solid waste: quality assessment and European regulations for its sustainable use, Resour. Conserv. Recycl., 94 (2015) 72–79.
  4. F. Lü, L.-M. Shao, H. Zhang, W.-D. Fu, S.-J. Feng, L.-T. Zhan, Y.-M. Chen, P.-J. He, Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: a mini review, Bioresour. Technol., 248 (2018) 122–133.
  5. K.E. Lasaridi, E.I. Stentiford, A simple respirometric technique for assessing compost stability, Water Res., 32 (1998) 3717–3723.
  6. R.B. Gómez, F. Vázquez Lima, A. Sánchez Ferrer, The use of respiration indices in the composting process: a review, Waste Manage. Res., 24 (2006) 37–47.
  7. R. Bayard, J. de Araújo Morais, G. Ducom, F. Achour, M. Rouez, R. Gourdon, Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste, J. Hazard. Mater., 175 (2010) 23–32.
  8. R. Cossu, T. Lai, A. Sandon, Standardization of BOD5/COD ratio as a biological stability index for MSW, Waste Manage., 32 (2012) 1503–1508.
  9. R. Barrena, G. d’Imporzano, S. Ponsá, T. Gea, A. Artola, F. Vázquez, A. Sánchez, F. Adani, In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste, J. Hazard. Mater., 162 (2009) 1065–1072.
  10. J. Villaseñor, L. Rodríguez Mayor, L. Rodríguez Romero, F.J. Fernández, Simulation of carbon degradation in a rotary drum pilot scale composting process, J. Environ. Manage., 108 (2012) 1–7.
  11. M. Pognani, R. Barrena, X. Font, A. Sánchez, A complete mass balance of a complex combined anaerobic/aerobic municipal source-separated waste treatment plant, Waste Manage., 32 (2012) 799–805.
  12. M. Pognani, R. Barrena, X. Font, B. Scaglia, F. Adani, A. Sánchez, Monitoring the organic matter properties in a combined anaerobic/aerobic full-scale municipal source-separated waste treatment plant, Bioresour. Technol., 101 (2010) 6873–6877.
  13. S. Ponsá, T. Gea, L. Alerm, J. Cerezo, A. Sánchez, Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process, Waste Manage., 28 (2008) 2735–2742.
  14. F. Adani, F. Tambone, A. Gotti, Biostabilization of municipal solid waste, Waste Manage., 24 (2004) 775–783.
  15. T.L. Hansen, J.E. Schmidt, I. Angelidaki, E. Marca, J.L.C. Jansen, H. Mosbæk, T.H. Christensen, Method for determination of methane potentials of solid organic waste, Waste Manage., 24 (2004) 393–400.
  16. E. Binner, K. Böhm, P. Lechner, Large scale study on measurement of respiration activity (AT4) by Sapromat and OxiTop, Waste Manage., 32 (2012) 1752–1759.
  17. F. Adani, C. Ubbiali, P. Generini, The determination of biological stability of composts using the dynamic respiration index: the results of experience after two years, Waste Manage., 26 (2006) 41–48.
  18. J. Colón, J. Martínez-Blanco, X. Gabarrell, A. Artola, A. Sánchez, J. Rieradevall, X. Font, Environmental assessment of home composting, Resour. Conserv. Recycl., 54 (2010) 893–904.
  19. B. Scaglia, V. Orzi, A. Artola, X. Font, E. Davoli, A. Sanchez, F. Adani, Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability, Bioresour. Technol., 102 (2011) 4638–4645.
  20. R. Sidełko, I. Siebielska, B. Janowska, A. Skubała, Assessment of biological stability of organic waste processed under aerobic conditions, J. Cleaner Prod., 164 (2017) 1563–1570.
  21. K. Münnich, C.F. Mahler, K. Fricke, Pilot project of mechanicalbiological treatment of waste in Brazil, Waste Manage., 26 (2006) 150–157.
  22. H. Saveyn, P. Eder, End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals, Publications Office of the European Union, Luxembourg, 2014.
  23. N. Juul, M. Münster, H. Ravn, M.L. Söderman, Challenges when performing economic optimization of waste treatment: a review, Waste Manage., 33 (2013) 1918–1925.
  24. M. Münster, H. Ravn, K. Hedegaard, N. Juul, M. Ljunggren Söderman, Economic and environmental optimization of waste treatment, Waste Manage., 38 (2015) 486–495.
  25. A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, 18th ed., APHA, Washington, 1992.
  26. Anon, Verordnung über die umweltverträgliche Ablagerung von Siedlungsabfällen (AbfAblV), BGBL, 2001.
  27. A. Jędrczak, S. Myszograj, J. Połomka, The composition and properties of Polish waste focused on biostabilisation in MBT plants during the heating season, Energies, 13 (2020) 1–10, doi: 10.3390/en13051072.
  28. K. Bernat, M. Zielińska, A. Cydzik-Kwiatkowska, I. Wojnowska- Baryła, Biogas production from different size fractions separated from solid waste and the accompanying changes in the community structure of methanogenic Archaea, Biochem. Eng. J., 100 (2015) 30–40.
  29. M.E. Edjabou, M.B. Jensen, R. Götze, K. Pivnenko, C. Petersen, C. Scheutz, T.F. Astrup, Municipal solid waste composition: sampling methodology, statistical analyses, and case study evaluation, Waste Manage., 36 (2015) 12–23.
  30. A. Cesaro, L. Russo, A. Farina, V. Belgiorno, Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options, Environ. Sci. Pollut. Res., 23 (2016) 1565–1575.
  31. C. Montejo, C. Costa, M.C. Márquez, Influence of input material and operational performance on the physical and chemical properties of MSW compost, J. Environ. Manage., 162 (2015) 240–249.
  32. A.S. Ball, E. Shahsavari, A. Aburto-Medina, K.K. Kadali, A.A.J. Shaiban, R.J. Stewart, Biostabilization of municipal solid waste fractions from an Advanced Waste Treatment Plant, J. King Saud Univ. – Sci., 29 (2017) 145–150.
  33. A. Jędrczak, M. Suchowska-Kisielewicz, A comparison of waste stability indices for mechanical–biological waste treatment and composting plants, Int. J. Environ. Res. Public Health, 15 (2018) 2585, doi:10.3390/ijerph15112585.
  34. A. Siciliano, C. Limonti, G.M. Curcio, V. Calabrò, Biogas generation through anaerobic digestion of compost leachate in semi-continuous completely stirred tank reactors, Processes, 7 (2019) 635, doi: 10.3390/pr7090635.
  35. H. Hashemi, A. Khodabakhshi, Complete treatment of compost leachate using integrated biological and membrane filtration processes, Iran. J. Chem. Chem. Eng., 35 (2016) 81–87.
  36. H. Hashemi, A. Ebrahimi, A. Khodabakhshi, Investigation of anaerobic biodegradability of real compost leachate emphasis on biogas harvesting, Int. J. Environ. Sci. Technol., 12 (2015) 2841–2846.
  37. D. Roy, A. Azaïs, S. Benkaraache, P. Drogui, R.D. Tyagi, Composting leachate: characterization, treatment, and future perspectives, Rev. Environ. Sci. Biotechnol., 17 (2018) 323–349.
  38. C. Paredes, A. Roig, M.P. Bernal, M.A. Sánchez-Monedero, J. Cegarra, Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes, Biol. Fertil. Soils, 32 (2000) 222–227.
  39. I. Wojnowska-Baryła, D. Kulikowska, K. Bernat, S. Kasiński, M. Zaborowska, T. Kielak, Stabilisation of municipal solid waste after autoclaving in a passively aerated bioreactor, Waste Manage. Res., 37 (2019) 542–550.
  40. M. Baptista, F. Antunes, M.S. Gonçalves, B. Morvan, A. Silveira, Composting kinetics in full-scale mechanical–biological treatment plants, Waste Manage., 30 (2010) 1908–1921.
  41. Y. Liu, T. Hu, Z. Wu, G. Zeng, D. Huang, Y. Shen, X. He, M. Lai, Y. He, Study on biodegradation process of lignin by FTIR and DSC, Environ. Sci. Pollut. Res., 21 (2014) 14004–14013.
  42. J. Połomka, A. Jędrczak, Potential of mineral fraction in compostlike- output, methods of its obtaining and the possibility of using it in the context of circular economy, Materials (Basel), 13 (2020) 3023, doi:10.3390/ma13133023.
  43. N. Dias, M. Teresa Carvalho, P. Pina, Characterization of mechanical biological treatment reject aiming at packaging glass recovery for recycling, Miner. Eng., 29 (2012) 72–76.
  44. T. Kaartinen, K. Sormunen, J. Rintala, Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining, J. Cleaner Prod., 55 (2013) 56–66.
  45. J.C.H. Parrodi, H. Lucas, M. Gigantino, G. Sauve, J.L. Esguerra, P. Einhäupl, D. Vollprecht, R. Pomberger, B. Friedrich, K. Van Acker, J. Krook, N. Svensson, S. Van Passel, Integration of resource recovery into current waste management through (enhanced) landfill mining, Detritus, 8 (2019) 141–156.
  46. T. Mönkäre, M.R.T. Palmroth, K. Sormunen, J. Rintala, Scaling up the treatment of the fine fraction from landfill mining: mass balance and cost structure, Waste Manage., 87 (2019) 464–471.
  47. Y. Zhao, L. Song, R. Huang, L. Song, X. Li, Recycling of aged refuse from a closed landfill, Waste Manage. Res., 25 (2007) 130–138.
  48. A. Bhatnagar, F. Kaczala, J. Burlakovs, M. Kriipsalu, M. Hogland, W. Hogland, Hunting for valuables from landfills and assessing their market opportunities A case study with Kudjape landfill in Estonia, Waste Manage. Res., 35 (2017) 627–635.
  49. R.M. Hull, U. Krogmann, P.F. Strom, Composition and characteristics of excavated materials from a New Jersey landfill, J. Environ. Eng., 131 (2005) 478–490.
  50. N. Dias, N. Belo, A. Máximo, M.T. Carvalho, Recovery of glass contained in the heavy residual fraction of Portuguese mechanical biological treatment plants, J. Cleaner Prod., 79 (2014) 271–275.
  51. N. Dias, A. Máximo, N. Belo, M.T. Carvalho, Packaging glass contained in the heavy residual fraction refused by Portuguese Mechanical and Biological Treatment Plants, Resour. Conserv. Recycl., 85 (2014) 98–105.
  52. J. Połomka, A. Jedrczak, S. Myszograj, Recovery of stabilizer glass in innovative MBT installation-an analasys of new technological procedure, Materials (Basel), 13 (2020) 1356, doi: 10.3390/ma13061356.
  53. M.B. Almendro-Candel, J. Navarro-Pedreño, M.M. Jordán, I. Gómez, I. Meléndez-Pastor, Use of municipal solid waste compost to reclaim limestone quarries mine spoils as soil amendments: effects on Cd and Ni, J. Geochem. Explor., 144 (2014) 363–366.
  54. D. Kulikowska, K. Bernat, I. Wojnowska-Baryła, B. Klik, S. Michałowska, S. Kasiński, Stabilizate from autoclaved municipal solid waste as a source of valuable humic substances in a waste circular economy, Waste Biomass Valorization, 11 (2019) 6147–6157.
  55. Z.M. Gusiatin, D. Kulikowska, B. Klik, Suitability of humic substances recovered from sewage sludge to remedy soils from a former As mining area – a novel approach, J. Hazard. Mater., 338 (2017) 160–166.
  56. F. Meng, G. Yuan, J. Wei, D. Bi, Y.S. Ok, H. Wang, Humic substances as a washing agent for Cd-contaminated soils, Chemosphere, 181 (2017) 461–467.