References
- D. Mohan, C.U. Pittman Jr., Activated carbons and low cost
adsorbents for remediation of tri- and hexavalent chromium
from water, J. Hazard Mater., 137 (2006) 762–811.
- V. Sarin, K.K. Pant, Removal of chromium from industrial waste
by using eucalyptus bark, Bioresour. Technol., 97 (2006) 15–20.
- K. Zhu, C. Chen, H. Xu, Y. Gao, X. Tan, A. Alsaedi, T. Hayat,
Cr(VI) reduction and immobilization
by core-double-shell
structured magnetic polydopamine@zeolitic idazolate
frameworks-8 microspheres, ACS Sustainable Chem. Eng., 5
(2017) 6795–6802.
- K. Ravikumar, D. Kumar, A. Rajeshwari, G. Madhu, P. Mrudula,
N. Chandrasekaran, A. Mukherjee,
A comparative study with
biologically and chemically synthesized nZVI: applications in
Cr(VI) removal and ecotoxicity assessment using indigenous
microorganisms from chromium-contaminated site, Environ.
Sci. Pollut. Res., 23 (2016) 2613–2627.
- A. Zayed, C.M. Lytle, J.-H. Qian, N. Terry, Chromium
accumulation, translocation and chemical speciation in vegetable
crops, Planta, 206 (1998) 293–299.
- K. Ravikumar, S.V. Sudakaran, M. Pulimi, C. Natarajan,
A. Mukherjee, Removal of hexavalent chromium using
nano zero valent iron and bacterial consortium immobilized
alginate beads in a continuous flow reactor, Environ. Technol.
Innovation, 12 (2018) 104–114.
- K. Mulani, S. Daniels, K. Rajdeo, S. Tambe, N. Chavan,
Adsorption of chromium(VI) from aqueous solutions by coffee
polyphenol-formaldehyde/acetaldehyde resins, J. Polym., 2013
(2013) 798368, doi:10.1155/2013/798368.
- H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, A novel
technology for biosorption and recovery hexavalent chromium
in wastewater by bio-functional magnetic beads, Bioresour.
Technol., 99 (2008) 6271–6279.
- A.S. Yusuff, Adsorption of hexavalent chromium from aqueous
solution by Leucaena leucocephala seed pod activated carbon:
equilibrium, kinetic and thermodynamic studies, Arab J. Basic
Appl. Sci., 26 (2019) 89–102.
- S. Hokkanen, A. Bhatnagar, A. Koistinen, T. Kangas, U. Lassi,
M. Sillanpää, Comparison of adsorption equilibrium models
and error functions for the study of sulfate removal by calcium
hydroxyapatite microfibrillated cellulose composite, Environ.
Technol., 39 (2018) 952–966.
- M. Qurie, M. Khamis, A. Manassra, I. Ayyad, S. Nir, L. Scrano,
S.A. Bufo, R. Karaman, Removal of Cr(VI) from aqueous
environments using micelle-clay adsorption, Sci. World J.,
2013 (2013) 942703, doi:10.1155/2013/942703.
- A. Kumar, H. Joshi, A.J.S. Kumar, P. Reviews, Remediation
of arsenic by metal/metal oxide based nanocomposites/
nanohybrids: contamination scenario in groundwater, practical
challenges, and future perspectives, Sep. Purif. Rev., 50 (2020)
1–32.
- M.M.E. Breky, E.H. Borai, A.T. Kassem, Synthesis of highgrade
alumina from aluminium dross and its utilization for the
sorption of radioactive cobalt, Desal. Water Treat., 170 (2019)
265–276.
- K. Rambabu, J. Al-Yammahi, G. Bharath, A. Thanigaivelan,
N. Sivarajasekar, F. Banat, Nano-activated carbon derived from
date palm coir waste for efficient sequestration of noxious
2,4-dichlorophenoxyacetic acid herbicide, Chemosphere,
282 (2021) 131103, doi: 10.1016/j.chemosphere.2021.131103.
- S. Nandhini, B. Samiha, S. Shwetha, G. Nirmala, T. Murugesan,
K. Rambabu, A. Hatem, A. Faheem, S. Pau Loke, Continuous
phenol removal using a liquid–solid circulating fluidized bed,
Energies, 13 (2020) 3839, doi:10.3390/en13153839.
- G. Bharath, J. Prakash, K. Rambabu, G.D. Venkatasubbu,
A. Kumar, S. Lee, J. Theerthagiri, M.Y. Choi, F. Banat,
Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for
highly efficient photoelectrocatalytic reduction of CO2 to
methanol toward the removal of an organic pollutant from the
atmosphere, J. Environ. Pollut., 281 (2021) 116990.
- H.R. Noormohamadi, M.R. Fat’hi, M. Ghaedi, G.R. Ghezelbash,
Potentiality of white-rot fungi in biosorption of nickel
and cadmium: modeling optimization and kinetics study,
Chemosphere, 216 (2019) 124–130.
- K. Rambabu, A. Thanigaivelan, G. Bharath, N. Sivarajasekar,
F. Banat, P.L. Show, Biosorption potential of Phoenix dactylifera
coir wastes for toxic hexavalent chromium sequestration,
Chemosphere, 268 (2021) 128809.
- S. Rangabhashiyam, E. Suganya, A.V. Lity, N. Selvaraju,
Equilibrium and kinetics studies of hexavalent chromium
biosorption on a novel green macroalgae Enteromorpha sp., Res.
Chem. Intermed., 42 (2016) 1275–1294.
- K. Rambabu, G. Bharath, F. Banat, P.L. Show, Biosorption
performance of date palm empty fruit bunch wastes for toxic
hexavalent chromium removal, Environ. Res., 187 (2020) 109694.
- R. Rahman, H. Ibrahium, Y.-T. Hung, Liquid radioactive wastes
treatment: a review, Water, 3 (2011) 551–565.
- P.A. Nishad, A. Bhaskarapillai, S. Velmurugan, S.V. Narasimhan,
Cobalt(II) imprinted chitosan for selective removal of cobalt
during nuclear reactor decontamination, Carbohydr. Polym.,
87 (2012) 2690–2696.
- M.M.E. Breky, E.H. Borai, M.S.E. Sayed, M.M. Abo-Aly,
Comparative sorption study of cesium, cobalt and europium
using induced gamma radiation polymeric nanocomposites,
Desal. Water Treat., 116 (2018) 148–157.
- N. Yousefi, M. Jones, A. Bismarck, A. Mautner, Fungal chitinglucan
nanopapers with heavy metal adsorption properties
for ultrafiltration of organic solvents and water, Carbohydr.
Polym., 253 (2021) 117273.
- C. Gok, S. Aytas, Biosorption of uranium(VI) from aqueous
solution using calcium alginate beads, J. Hazard. Mater.,
168 (2009) 369–375.
- K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical
applications, Prog. Polym. Sci., 37 (2012) 106–126.
- J. Choi, Characterization of hydrogel made by pH-responsive
polymer and alginate, Polymers, 41 (2017) 1046–1051.
- S. Chen, Y. Zou, Z. Yan, W. Shen, S. Shi, X. Zhang, H. Wang,
Carboxymethylated-bacterial cellulose for copper and lead ion
removal, J. Hazard. Mater., 161 (2009) 1355–1359.
- Q. Li, H. Su, T. Tan, Synthesis of ion-imprinted chitosan-TiO2
adsorbent and its multi-functional performances, Biochem.
Eng. J., 38 (2008) 212–218.
- D. Kanakaraju, S. Ravichandar, Y.C. Lim, Combined effects of
adsorption and photocatalysis
by hybrid TiO2/ZnO-calcium
alginate beads for the removal of copper, J. Environ. Sci.,
55 (2017) 214–223.
- D. Chen, A.K. Ray, Removal of toxic metal ions from wastewater
by semiconductor photocatalysis, Chem. Eng. Sci., 56 (2001)
1561–1570.
- X. Wang, S. Pehkonen, A.K. Ray, Removal of aqueous Cr(VI) by
a combination of photocatalytic reduction and coprecipitation,
Ind. Eng. Chem. Res., 43 (2004) 1665–1672.
- M. López-Muñoz, J. Aguado, A. Arencibia, R. Pascual, Mercury
removal from aqueous solutions of HgCl2 by heterogeneous
photocatalysis with TiO2, Appl. Catal., B, 104 (2011) 220–228.
- S. Satyro, R. Marotta, L. Clarizia, I. Di Somma, G. Vitiello,
M. Dezotti, G. Pinto, R.F. Dantas, R. Andreozzi, Removal of
EDDS and copper from waters by TiO2 photocatalysis under
simulated UV–solar conditions, Chem. Eng. J., 251 (2014)
257–268.
- C.D. Murphy, Drug metabolism in microorganisms, Biotechnol.
Lett., 37 (2015) 19–28.
- V. Tigini, V. Prigione, I. Donelli, A. Anastasi, G. Freddi,
P. Giansanti, A. Mangiavillano, G.C. Varese, Cunninghamella
elegans biomass optimisation for textile wastewater biosorption
treatment: an analytical and ecotoxicological approach, Appl.
Microbiol. Biotechnol., 90 (2011) 343–352.
- A. Abdel-Razek, T. Abdel-Ghany, S. Mahmoud, H. El-Sheikh,
M. Mahmoud, The use of free and immobilized Cunninghamella
elegans for removing cobalt ions from aqueous waste solutions,
World J. Microbiol. Biotechnol., 25 (2009) 2137.
- P.T. Williams, A. Reed, Development of activated carbon pore
structure via physical and chemical activation of biomass fibre
waste, Biomass Bioenergy, 30 (2006) 144–152.
- A.-F. Ngomsik, A. Bee, J.-M. Siaugue, D. Talbot, V. Cabuil,
G. Cote, Co(II) removal by magnetic alginate beads containing
Cyanex 272®, J. Hazard. Mater., 166 (2009) 1043–1049.
- Y. Sharma, V. Srivastava, A. Mukherjee, Synthesis and
application of nano-Al2O3 powder for the reclamation of
hexavalent chromium from aqueous solutions, J. Chem. Eng.
Data, 55 (2010) 2390–2398.
- Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker,
Effect of solution pH, ionic strength, and temperature on
adsorption behavior of reactive dyes on activated carbon, Dyes
Pigm., 77 (2008) 16–23.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H. Freundlich, Over the adsorption in solution, J. Phys. Chem.,
57 (1906) 1100–1107.
- S. Bo, W. Ren, C. Lei, Y. Xie, Y. Cai, S. Wang, J. Gao,
Q. Ni, J. Yao, Flexible and porous cellulose aerogels/zeolitic
imidazolate framework (ZIF-8) hybrids for adsorption removal
of Cr(IV) from water, J. Solid State Chem., 262 (2018) 135–141.
- K. Rambabu, B. Fawzi, G. Nirmala, S. Velu, P. Monash, G.
Arthanareeswaran, Activated carbon from date seeds for
chromium removal in aqueous solution, Desal. Water Treat.,
156 (2019) 267–277.
- S.K. Lagergren, About the theory of so-called adsorption
of soluble substances, Sven. Vetenskapsakad. Handingarl,
24 (1898) 1–39.
- Y.-S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W. Shen, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai, J.-A. Hao, Y. Tong,
Alginate modified graphitic carbon nitride composite hydrogels
for efficient removal of Pb(II), Ni(II) and Cu(II) from water,
Int. J. Biol. Macromol., 148 (2020) 1298–1306.
- G. Asgari, A.R. Rahmani, J. Faradmal, M.A. Seid, Kinetic
and isotherm of hexavalent chromium adsorption onto nano
hydroxyapatite, J. Health Sci. Res., 12 (2012) 45–53.
- Y.-y. Wang, W.-b. Yao, Q.-w. Wang, Z.-h. Yang, L.-f. Liang,
L.-y. Chai, Synthesis of phosphate-embedded calcium alginate
beads for Pb(II) and Cd(II) sorption and immobilization in
aqueous solutions, Trans. Nonferrous Met. Soc., 26 (2016)
2230–2237.
- W.M. Algothmi, N.M. Bandaru, Y. Yu, J.G. Shapter, A.V. Ellis,
Alginate–graphene oxide hybrid gel beads: an efficient copper
adsorbent material, J. Colloid Interface Sci., 397 (2013) 32–38.
- A. Ahmad, A. Bhat, A. Buang, Biosorption of transition metals
by freely suspended and Ca-alginate immobilised with Chlorella
vulgaris: kinetic and equilibrium modeling, J. Cleaner Prod.,
171 (2018) 1361–1375.
- L. Xu, J. Wang, The application of graphene-based materials
for the removal of heavy metals and radionuclides from
water and wastewater, Crit. Rev. Env. Sci. Technol., 47 (2017)
1042–1105.
- A. Omer, R. Khalifa, Z. Hu, H. Zhang, C. Liu, X.-k. Ouyang,
Fabrication of tetraethylenepentamine functionalized alginate
beads for adsorptive removal of Cr(VI) from aqueous
solutions, Int. J. Biol. Macromol., 125 (2019) 1221–1231.
- Y. Zhu, J. Hu, J. Wang, Removal of Co2+ from radioactive
wastewater by polyvinyl alcohol (PVA)/chitosan magnetic
composite, Prog. Nucl. Energy, 71 (2014) 172–178.
- S. Bhattarai, J.S. Kim, Y.-S. Yun, Y.-S. Lee, Thiourea-immobilized
polymer beads for sorption of Cr(VI) ions in acidic aqueous
media, Macromol. Res., 27 (2019) 515–521.
- S. Zhuang, Y. Yin, J. Wang, Simultaneous detection and removal
of cobalt ions from aqueous solution by modified chitosan
beads, Int. J. Environ. Sci. Technol., 15 (2018) 385–394.
- T. Altun, Chitosan-coated sour cherry kernel shell beads: an
adsorbent for removal of Cr(VI) from acidic solutions, J. Anal.
Sci. Technol., 10 (2019) 14.
- H. Chen, D. Shao, J. Li, X. Wang, The uptake of radionuclides
from aqueous solution by poly (amidoxime) modified reduced
graphene oxide, Chem. Eng. J., 254 (2014) 623–634.
- E.-h. Ablouh, Z. Hanani, N. Eladlani, M. Rhazi, M. Taourirte,
Chitosan microspheres/sodium alginate hybrid beads: an
efficient green adsorbent for heavy metals removal from
aqueous solutions, Sustainable Environ. Res., 29 (2019) 1–11.
- W. Jung, B.-H. Jeon, D.-W. Cho, H.-S. Roh, Y. Cho, S.-J. Kim, D.S.
Lee, Sorptive removal of heavy metals with nano-sized carbon
immobilized alginate beads, J. Ind. Eng. Chem., 26 (2015)
364–369.
- G.Z. Kyzas, Commercial coffee wastes as materials for
adsorption of heavy metals from aqueous solutions, J. Mater.,
5 (2012) 1826–1840.