References

  1. D.J. Pernitsky, J.K. Edzwald, Selection of alum and polyaluminum coagulants: principles and applications,
    J. Water Supply Res. Technol. AQUA, 55 (2006) 121–141.
  2. B. Eikebrokk, T. Juhna, S. Østerhus, Water Treatment by Enhanced Coagulation – Operational Status and Optimization Issues, Techneau, D 5.3.1, December 2006. Available at: http:// www.techneau.eu
  3. D. Shu-xuan, X. Hui, X. Feng, W. Dong-sheng, Y. Chang-qing, J. Ru-yuan, L. Yan-jing, Effects of Al species on coagulation efficiency, residual Al and floc properties in surface water treatment, Colloids Surf., A, 459 (2014) 14–21.
  4. M. Yan, D. Wang, J. Ni, J. Qu, Ch. Chow, H. Liu, Mechanism of natural organic matter removal by polyaluminum chloride: effect of coagulant particle size and hydrolysis kinetics, Water Res., 42 (2008) 3361–3370.
  5. Y. Wang, B.-Y. Gao, X.-M. Xu, W.-Y. Xu, G.-Y. Xu, Characterization of floc size, strength and structure in various aluminum coagulants treatment, J. Colloid Interface Sci., 332 (2009) 354–359.
  6. W. Xu, B. Gao, Q. Yue, Y. Wang, Effect of shear force and solution pH on flocs breakage and re-growth formed by nano-Al13 polymer, Water Res., 44 (2010) 1893–1899.
  7. W. Xu, B. Gao, B. Du, Z. Xu, Y. Zhang, D. Wei, Influence of shear force on floc properties and residual aluminum in humic acid treatment by nano-Al13, J. Hazard. Mater., 271 (2014) 1–8.
  8. D. Lee, J. Bonner, L. Garton, A. Ernest, R. Autenrieth, Modeling coagulation kinetics incorporating fractal theories: comparison with observed data, Water Res., 36 (2002) 1056–1066.
  9. W. Xu, B. Gao, Q. Yue, Q. Wang, Effect of preformed and non-preformed Al13 species on evolution of floc size, strength and fractal nature of humic acid flocs in coagulation process, Sep. Purif. Technol., 78 (2011) 83–90.
  10. T. Li, Z. Zhu, D. Wang, C. Yao, H. Tang, Characterization of floc size, strength and structure under various coagulation mechanisms, Powder Technol., 168 (2006) 104–110.
  11. H. Xu, F. Xiao, D. Wang, Ch. Ye, Survey of treatment process in water treatment plant and the characteristics of flocs formed by two new coagulants, Colloids Surf., A, 456 (2014) 211–221.
  12. H. Xu, R.Y. Jiao, F. Xiao, D.S. Wang, Relative importance of hydrolyzed Al species (Ala, Alb, Alc) on residual Al and effects of nano-particles (Fe-surface modified TiO2 and Al2O3) on coagulation process, Colloids Surf., A, 446 (2014) 139–150.
  13. H. Xu, W. Jiang, F. Xiao, D. Wang, The characteristics of flocs and zeta potential in nano-TiO2 system under different coagulation conditions, Colloids Surf., A, 452 (2014) 181–188.
  14. H. Xu, R.Y. Jiao, F. Xiao, D.S. Wang, Effects of different coagulants in treatment of TiO2-humic acid (HA) water and the aggregate characterization in different coagulation conditions, Colloids Surf., A, 446 (2014) 213–223.
  15. W. Yu, G. Li, Y. Xu, Breakage and re-growth of flocs formed by alum and PACl, Powder Technol., 189 (2009) 439–443.
  16. P. Jarvis, B. Jefferson, J. Gregory, A review of floc strength and breakage, Water Res., 39 (2005) 3121–3137.
  17. P. Jarvis, B. Jefferson, S. Parsons, Breakage, regrowth, and fractal nature of natural organic matter flocs, Environ. Sci. Technol., 39 (2005) 2307–2314.
  18. K. McCurdy, K. Carlson, D. Gregory, Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants, Water Res., 38 (2004) 486–494.
  19. M. Yukselen, J. Gregory, The reversibility of flocs breakage, Int. J. Miner. Process., 73 (2004b) 251–259.
  20. W. Xu, B. Gao, Y. Wang, Z. Yang, X. Bo, Role of Al13 species in removal of natural organic matter from low specific UV absorbance surface water and the aggregates characterization, Chem. Eng. J., 71 (2011) 926–934.
  21. B. Zhao, D. Wang, T. Li, Ch. Chow, Ch. Huang, Influence of floc structure on coagulation–microfiltration performance: effect of Al speciation characteristics of PACls, Sep. Purif. Technol., 72 (2010) 22–27.
  22. Z. Chen, Z. Luan, Z. Jia Z., X. Li, Study on the hydrolysis precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions, J. Environ. Manage., 90 (2009) 2831–2840.
  23. K. McCurdy, K. Carlson, D. Gregory, Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants, Water Res., 38 (2004) 486–494.
  24. M. Solomentseva, S. Barany, J. Gregory, Surface properties and aggregation of basic aluminium sulphate hydrolysis products. 1. Electrokinetic potential and hydration of BAS hydrolysis product particles, Colloids Surf., A, 230 (2004) 117–129.
  25. Ch. Ye, D. Wang, X. Wu, J. Qu, J. Gregory, Modified ferron assay for speciation characterization of hydrolyzed Al(III): a precise k-value based judgment, Water Sci. Technol., 59 (2009) 823–832.
  26. Ch. Ye, D. Wang, X. Wu, J. Qu, k-value-based ferron assay and its application, J. Colloid Interface Sci., 335 (2009) 44–49.
  27. J. Gumińska, M. Kłos, Reliability of ferronometry assays for aluminum speciation in pre-hydrolyzed coagulants, J. Archit. Civ. Eng. Environ. – ACEE, 3 (2013) 77–81.
  28. J. Gumińska, M. Kłos, Application of Ferronometry in Determination of in situ Al Species Transformation in Pre-Hydrolyzed Coagulants, in: Water Supply and Water Quality, Series: Engineering for Environmental Protection, Pub. PZiTS Poznań, Poland, 2010.
  29. B. Shi, Q. Wei, D. Wang, Z. Zhu, H. Tang, Coagulation of humic acid: the performance of preformed and non-preformed Al species, Colloids Surf., A, 296 (2007) 141–148.