References

  1. H.K. Hansen, S.F. Peña, C. Gutiérrez, A. Lazo, P. Lazo, L.M. Ottosen, Selenium removal from petroleum refinery wastewater using an electrocoagulation technique, J. Hazard. Mater., 364 (2019) 78–81.
  2. X. Xia, L. Ling, W.-x. Zhang, Solution and surface chemistry of the Se(IV)-Fe(0) reactions: effect of initial solution pH, Chemosphere, 168 (2017) 1597–1603.
  3. S.-H. Hong, F.N. Lyong, J.-K. Kang, E.-J. Seo, C.-G. Lee, S. Jeong, S.-G. Hong, S.-J. Park, Synthesis of
    Fe-impregnated biochar from food waste for selenium(VI) removal from aqueous solution through adsorption: process optimization and assessment, Chemosphere, 252 (2020) 126475.
  4. R. López de Arroyabe Loyo, S.I. Nikitenko, A.C. Scheinost, M. Simonoff, Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles, Environ. Sci. Technol., 42 (2008) 2451–2456.
  5. P. Cordoba, L.C. Staicu, Flue gas desulfurization effluents: an unexploited selenium resource, Fuel, 223 (2018) 268–276.
  6. J. Wang, W. Zhang, X. Kang, C. Zhang, Rapid and efficient recovery of silver with nanoscale zerovalent iron supported on high performance activated carbon derived from straw biomass, Environ. Pollut., 255 (2019) 113043.
  7. H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou, G. Zeng, Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 332 (2017) 79–86.
  8. H. Su, Z. Fang, P.E. Tsang, J. Fang, D. Zhao, Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil, Environ. Pollut., 214 (2016) 94–100.
  9. J.S. Clemente, S. Beauchemin, T. MacKinnon, J. Martin, C.T. Johnston, B. Joern, Initial biochar properties related to the removal of As, Se, Pb, Cd, Cu, Ni, and Zn from an acidic suspension, Chemosphere, 170 (2017) 216–224.
  10. S. Wang, B. Gao, Y. Li, A.E. Creamer, F. He, Adsorptive removal of arsenate from aqueous solutions by biochar supported zerovalent iron nanocomposite: batch and continuous flow tests, J. Hazard. Mater., 322 (2017) 172–181.
  11. H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 172 (2009) 1591–1596.
  12. G. Tan, Y. Mao, H. Wang, M. Junaid, N. Xu, Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of Se(IV) and Se(VI): influence of pH, ionic strength, and natural organic matter, Environ. Sci. Pollut. Res. Int., 26 (2019) 21609–21618.
  13. L. Wu, L. Liao, G. Lv, F. Qin, Y. He, X. Wang, Micro-electrolysis of Cr(VI) in the nanoscale zero-valent iron loaded activated carbon, J. Hazard. Mater., 254–255 (2013) 277–283.
  14. J. Shang, M. Zong, Y. Yu, X. Kong, Q. Du, Q. Liao, Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar, J. Environ. Manage., 197 (2017) 331–337.
  15. Y. Zhou, B. Gao, A.R. Zimmerman, H. Chen, M. Zhang, X. Cao, Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions, Bioresour. Technol., 152 (2014) 538–542.
  16. S. Wang, Y. Song, Y. Sun, Enhanced dyes removal by sulfidated zerovalent iron: Kinetics and influencing factors, Envirion. Technol. Innovation, 11 (2018) 339–347.
  17. L. Liang, W. Yang, X. Guan, J. Li, Z. Xu, J. Wu, Y. Huang, X. Zhang, Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron, Water Res., 47 (2013) 5846–5855.
  18. S. Bae, K. Hanna, Reactivity of nanoscale zero-valent iron in unbuffered systems: effect of pH and Fe(II) dissolution, Environ. Sci. Technol., 49 (2015) 10536–10543.
  19. H. Dong, Y. Chen, G. Sheng, J. Li, J. Cao, Z. Li, Y. Li, The roles of a pillared bentonite on enhancing Se(VI) removal by ZVI and the influence of co-existing solutes in groundwater, J. Hazard. Mater., 304 (2016) 306–312.
  20. J. Qiao, Y. Song, Y. Sun, X. Guan, Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(VI) removal, Chem. Eng. J., 353 (2018) 246–253.
  21. K. Lin, J. Ding, X. Huang, Debromination of tetrabromobisphenol A by nanoscale zerovalent iron: kinetics, influencing factors, and pathways, Ind. Eng. Chem. Res., 51 (2012) 8378–8385.
  22. D. Lv, X. Zhou, J. Zhou, Y. Liu, Y. Li, K. Yang, Z. Lou, S.A. Baig, D. Wu, X. Xu, Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions, Appl. Surf. Sci., 442 (2018) 114–123.
  23. T. Chen, L. Luo, S. Deng, G. Shi, S. Zhang, Y. Zhang, O. Deng, L. Wang, J. Zhang, L. Wei, Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure, Bioresour. Technol., 267 (2018) 431–437.
  24. L. Liang, X. Guan, Z. Shi, J. Li, Y. Wu, P.G. Tratnyek, Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron, Environ. Sci. Technol., 48 (2014) 6326–6334.
  25. R.M. Powell, R.W. Puls, S.K. Hightower, D.A. Sabatini, Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation, Environ. Sci. Technol., 29 (1995) 1913–1922.
  26. J.A. Mielczarski, G.M. Atenas, E. Mielczarski, Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions, Appl. Catal., B, 56 (2005) 289–303.
  27. L. Xu, Y. Huang, Kinetics and mechanism of selenite reduction by zero valent iron under anaerobic condition activated and enhanced by dissolved Fe(II), Sci. Total Environ., 664 (2019) 698–706.
  28. L. Ling, B. Pan, W.-x. Zhang, Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV), Water Res., 71 (2015) 274–281.
  29. L. Huang, S. Zhou, F. Jin, J. Huang, N. Bao, Characterization and mechanism analysis of activated carbon fiber feltstabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution, Colloids Surf., A, 447 (2014) 59–66.
  30. F. He, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Technol., 41 (2007) 6216–6221.
  31. J. Gao, L. Yang, Y. Liu, F. Shao, Q. Liao, J. Shang, Scavenging of Cr(VI) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by biochar, J. Taiwan Inst. Chem. Eng., 91 (2018) 449–456.
  32. D. Li, X. Zhu, Y. Zhong, W. Huang, P. a. Peng, Abiotic transformation of hexabromocyclododecane by sulfidated nanoscale zerovalent iron: kinetics, mechanism and influencing factors, Water Res., 121 (2017) 140–149.
  33. C. Shen, W. Lu, Y. Huang, J. Wu, H. Zhang, Removal of bismerthiazol from water using zerovalent iron: Batch studies and mechanism interpretation, Chem. Eng. J., 260 (2015) 411–418.
  34. H. Lu, C. Wen, S. Gao, Y. Dong, M. Zhang, B. Li, W. Hu, J. Dong, Incorporation of nanoscale zero-valent iron particles in monodisperse mesoporous silica nanospheres: characterization, reactivity, transport in porous media, Colloids Surf., A, 553 (2018) 28–34.
  35. L.E. Katz, L.J. Criscenti, C.-c. Chen, J.P. Larentzos, H.M. Liljestrand, Temperature effects on alkaline earth metal ions adsorption on gibbsite: approaches from macroscopic sorption experiments and molecular dynamics simulations, J. Colloid Interface Sci., 399 (2013) 68–76.
  36. N. Sleiman, V. Deluchat, M. Wazne, M. Mallet, A. Courtin- Nomade, V. Kazpard, M. Baudu, Phosphate removal from aqueous solutions using zero valent iron (ZVI): influence of solution composition and ZVI aging, Colloids Surf., A, 514 (2017) 1–10.
  37. F. Kallel, F. Chaari, F. Bouaziz, F. Bettaieb, R. Ghorbel, S.E. Chaabouni, Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product, J. Mol. Liq., 219 (2016) 279–288.
  38. G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polymer Sci., 33 (2008) 399–447.
  39. L. Liu, Y. Lin, Y. Liu, H. Zhu, Q. He, Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: adsorption equilibrium, kinetics, and thermodynamics, J. Chem. Eng. Data, 58 (2013) 2248–2253.
  40. N. Zhang, L.-S. Lin, D. Gang, Adsorptive selenite removal from water using iron-coated GAC adsorbents, Water Res., 42 (2008) 3809–3816.
  41. Y. Onal, C. Akmil-Basar, C. Sarici-Ozdemir, Investigation kinetics mechanisms of adsorption malachite green onto activated carbon, J. Hazard. Mater., 146 (2007) 194–203.
  42. T. Mahmood, S.U. Din, A. Naeem, S. Tasleem, A. Alum, S. Mustafa, Kinetics, equilibrium and thermodynamics studies of arsenate adsorption from aqueous solutions onto iron hydroxide, J. Ind. Eng. Chem., 20 (2014) 3234–3242.