References

  1. S.M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, K. Venkateswara Rao, Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal–organic precursors, Mater. Res. Bull., 47 (2012) 3148–3159.
  2. A. Salehabadi, M. Salavati-Niasari, M. Ghiyasiyan-Arani, Self-assembly of hydrogen storage materials based multiwalled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles, J. Alloys Compd., 745 (2018) 789–797.
  3. S. Ahmadian-Fard-Fini, D. Ghanbari, M. Salavati-Niasari, Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material, Composites, Part B, 161 (2019) 564–577.
  4. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7-based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine, Composites, Part B, 167 (2019) 643–653.
  5. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, D. Ghanbari, Hydrothermal green synthesis of magnetic
    Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting
    of E. coli bacteria, Spectrochim. Acta, Part A, 203 (2018) 481–493.
  6. M. Ghanbari, M. Salavati-Niasari, Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes, Inorg. Chem., 57 (2018) 11443–11455.
  7. M. Salavati-Niasari, Nanodimensional microreactorencapsulation of 18-membered decaaza macrocycle copper(II) complexes, Chem. Lett., 34 (2005) 244–245.
  8. X.L. Liu, R. Ma, L. Zhuang, B.W. Hu, J.R. Chen, X.Y. Liu, X.K. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants, Crit. Rev. Env. Sci. Technol., 51 (2021) 751–790.
  9. L. Yao, H. Yang, Z.S. Chen, M.Q. Qiu, B.W. Hu, X.X. Wang, Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater, Chemosphere, 273 (2021) 128576, doi:10.1016/j.chemosphere.2020.128576.
  10. M.J. Hao, M.Q. Qiu, H. Yang, B.W. Hu, X.X. Wang, Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis, Sci. Total Environ., 760 (2021) 143333, doi:10.1016/j.scitotenv.2020.143333.
  11. S.J. Yu, H.W. Pang, S.Y. Huang, H. Tang, S.Q. Wang, M.Q. Qiu, Z.S. Chen, H. Yang, G. Song, D. Fu, B.W. Hu, X.X. Wang, Recent advances in metal-organic framework membranes for water treatment: A review, Sci. Total Environ., 800 (2021).
  12. Q. Li, Z.S. Chen, H.H. Wang, H. Yang, T. Wen, S.Q. Wang, B.W. Hu, X.K. Wang, Removal of organic compounds by nanoscale zero-valent iron and its composites, Sci. Total Environ., 792 (2021) 148546, doi:10.1016/j.scitotenv.2021. 148546.
  13. M. Hojamberdiev, R.M. Prasad, K. Morita, Y. Zhu, M.A. Schiavon, A. Gurlo, R. Riedel, Template-free synthesis of polymer-derived mesoporous SiOC/TiO2 and SiOC/N-doped TiO2 ceramic composites for application in the removal of organic dyes from contaminated water, Appl. Catal., B, 115–116 (2012) 303–313.
  14. S. Peiris, H.B. de Silva, K.N. Ranasinghe, S.V. Bandara, I.R. Perera, Recent development and future prospects of TiO2 photocatalysis, J. Chin. Chem. Soc., 68 (2021) 738–769.
  15. S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S.J. Hinder, J. Bartlett, M. Nolan, S.C. Pillai, Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity, Appl. Sci. Basel, 8 (2018) 2067, doi:10.3390/app8112067.
  16. X.D. Zhang, D. Yue, L. Zhang, S.W. Lin, Three-dimensional flexible Au nanoparticles-decorated TiO2 nanotube arrays for photoelectrochemical biosensing, J. Mater. Sci. Technol., 56 (2020) 162–169.
  17. Y. Liu, Z.Z. Xiao, S. Cao, J.H. Li, L.Y. Piao, Controllable synthesis of Au-TiO2 nanodumbbell photocatalysts with spatial redox region, Chin. J. Catal., 41 (2020) 219–226.
  18. S.J. Ki, Y.K. Park, J.S. Kim, W.J. Lee, H. Lee, S.C. Jung, Facile preparation of tungsten oxide doped TiO2 photocatalysts using liquid phase plasma process for enhanced degradation of diethyl phthalate, Chem. Eng. J., 377 (2019) 120087, doi: 10.1016/j.cej.2018.10.024.
  19. Z.R. Yang, Z.Y. He, W.L. Wu, Y. Zhou, Preparation of graphene-TiO2 photocatalysis materials by laser-induced hydrothermal method, Colloid Interface Sci. Commun., 42 (2021) 100408, doi: 10.1016/j.colcom.2021.100408.
  20. M. Zhao, F. Ling, Z. Gong, D. Zhuang, Absorption property in visible region of TiO2–xNx films prepared by reactive sputtering, Chin. J. Mater. Res., 18 (2004) 108–112.
  21. Y. Liu, J. Li, X. Qiu, C. Burda, Novel TiO2 nanocatalysts for wastewater purification: tapping energy from the sun, Water Sci. Technol., 54 (2006) 47–54.
  22. H. Wang, J.P. Lewis, Second-generation photocatalytic materials: anion-doped TiO2, J. Phys.: Condens. Matter, 18 (2006) 421–434.
  23. D. Robert, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications, Catal. Today, 122 (2007) 20–26.
  24. Y. Yalcin, M. Kilic, Z. Cinar, Fe3+-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity, Appl. Catal., B, 99 (2010) 469–477.
  25. K.E. Karakitsou, X.E. Verykios, Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage, J. Phys. Chem., 97 (1993) 1184–1189.
  26. J.J. Lin, J.X. Shen, R.J. Wang, J.J. Cui, W.J. Zhou, P.G. Hu, D.O. Liu, H. Liu, J.Y. Wang, R.I. Boughton, Y.Z. Yue,
    Nano-p-n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity, J. Mater. Chem., 21 (2011) 5106–5113.
  27. Y. Li, X.P. Gao, G.R. Li, G.L. Pan, T.Y. Yan, H.Y. Zhu, Titanate nanofiber reactivity: fabrication of MTiO3
    (M = Ca, Sr, and Ba) perovskite oxides, J. Phys. Chem. C, 113 (2009) 4386–4394.
  28. H.R. Zhang, G.S. Miao, X.P. Ma, B. Wang, Fabrication and photocatalytic property of one-dimensional
    SrTiO3/TiO2–xNx nanostructures, Int. J. Photoenergy, 2013 (2013), doi: 10.1155/2013/413507.
  29. Y. Yang, K. Lee, Y. Kado, P. Schmuki, Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting, Electrochem. Commun., 17 (2012) 56–59.
  30. J. Ng, S.P. Xu, X.W. Zhang, H.Y. Yang, D.D. Sun, Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting, Adv. Funct. Mater., 20 (2010) 4287–4294.
  31. J. Zhang, J.H. Bang, C.C. Tang, P.V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance, ACS Nano, 4 (2010) 387–395.
  32. N. Uekawa, J. Kajiwara, K. Kakegawa, Y. Sasaki, Low temperature synthesis and characterization of porous anatase TiO2 nanoparticles, J. Colloid Interface Sci., 250 (2002) 285–290.
  33. Y. Li, T.J. White, S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles, J. Solid State Chem., 177 (2004) 1372–1381.
  34. L. Znaidi, R. Seraphimova, J.F. Bocquet, C. Colbeau-Justin, C. Pommier, A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts, Mater. Res. Bull., 36 (2001) 811–825.
  35. J. Yang, S. Mei, J.M.F. Ferreira, Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics, J. Am. Ceram. Soc., 84 (2001) 1696–1702.
  36. S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.I. Lee, Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films, Chem. Mater., 15 (2003) 3326–3331.
  37. M. Boutonnet, J. Kizling, P. Stenius, The preparation of monodisperse colloidal metal particles from
    micro-emulsions, Colloids Surf., 5 (1982) 209–225.
  38. S.S. Hong, M.S. Lee, S.S. Park, G.D. Lee, Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol, Catal. Today, 87 (2003) 99–105.
  39. K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: an update, Curr. Opin. Solid State Mater. Sci., 6 (2002) 507–512.
  40. S.T. Aruna, M. Muthuraman, K.C. Patil, Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells, Solid State Ionics, 111 (1998) 45–51.
  41. Y.P. Fu, S. Tsao, C.T. Hu, Preparation of Y3Al5O12: Cr powders by microwave-induced combustion process and their luminescent properties, J. Alloys Compd., 395 (2005) 227–230.
  42. Y.P. Fu, C.H. Lin, Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized microwave-induced combustion process, J. Alloys Compd., 386 (2005) 222–227.
  43. D.R. Baghurst, A.M. Chippindale, D.M.P. Mingos, Microwave syntheses for superconducting ceramics, Nature, 332 (1988) 311–311.
  44. D. Kanakaraju, M.A.A. Jasni, Y.C. Lim, A highly photoresponsive and efficient molybdenum-modified titanium dioxide photocatalyst for the degradation of methyl orange, Int. J. Environ. Sci. Technol., (2021) (in Press).
  45. A.O. Araoyinbo, M.M.A.B. Abdullah, A. Rahmat, A.I. Azmi, P. Vizureanu, W.M.F. Wan Abd Rahim, Preparation of heat treated titanium dioxide (TiO2) nanoparticles for water purification, IOP Conf. Ser.: Mater. Sci. Eng., 374 (2018) 012084.
  46. S. Damdinova, W.C. Liu, S. Wang, B. Dugarov, Z.M. Su, Z.Q. Cheng, Preparation of coral-like Ag2MoO4-TiO2 heterostructure and its photocatalytic properties, Mater. Chem. Phys., 235 (2019) 121765, doi: 10.1016/j.matchemphys.2019.121765.
  47. R.A. Spurr, H. Myers, Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer, Anal. Chem., 29 (1957) 760–762.
  48. R. Rodriguez Talavera, S. Vargas, R. Arroyo Murillo, R. Montiel Campos, E. Haro Poniatowski, Modification of the phas transition temperatures in titania doped with various cations, J. Mater. Res., 12 (1997) 439–443.
  49. M.Q. Qiu, B.W. Hu, Z.S. Chen, H. Yang, L. Zhuang, X.K. Wang, Challenges of organic pollutant photocatalysis by biocharbased catalysts, Biochar, 3 (2021) 117–123.
  50. Y.L. Zhu, W.Z. Wang, J. Ni, B.W. Hu, Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater, Chemosphere, 246 (2020) 125753, doi: 10.1016/j. chemosphere.2019.125753.
  51. M. Fang, X.L. Tan, Z.X. Liu, B.W. Hu, X.K. Wang, Recent progress on metal-enhanced photocatalysis: a review on the mechanism, Research, 2021 (2021).
  52. M.S. Dieckmann, K.A. Gray, A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries, Water Res., 30 (1996) 1169–1183.
  53. L.Z. Sun, J.R. Bolton, Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions, J. Phys. Chem., 100 (1996) 4127–4134.
  54. Z. Salehi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Novel synthesis of Dy2Ce2O7 nanostructures via a facile combustion route, RSC Adv., 6 (2016) 26895–26901.
  55. S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, Preparation, characterization and photocatalytic properties of Pr2Ce2O7 nanostructures via a facile procedure, RSC Adv., 6 (2016) 107785–107792.
  56. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Simple salt-assisted combustion synthesis of Nd2Sn2O7-SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye, J. Mater. Sci. - Mater. Electron., 27 (2016) 11698–11706.