References

  1. E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination by using alternative energy: review and state-of-the-art, Desalination, 203 (2007) 346–365.
  2. WHO, Progress on Household Drinking Water, Sanitation and Hygiene. Special Focus on Inequalities, World Health Organization, 2019.
  3. S. Kalogirou, Seawater desalination using renewable energy sources, Prog. Energy Combust. Sci., 31 (2005) 242–281.
  4. D. Lawal, S. Zubair, M. Antar, Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP), Desalination, 443 (2018) 11–25.
  5. M. Zubair, A. Al-Sulaiman, M. Antar, S. Al-Dini, N. Ibrahim, Performance and cost assessment of solar driven humidification dehumidification desalination system, Energy Convers. Manage., 132 (2017) 28–39.
  6. M. Darwish, H. Abdulrahim, A. Hassan, A. Mabrouk, PV and CSP solar technologies and desalination: economic analysis, Desal. Water Treat., 57 (2016) 16679–16702.
  7. A. Ghermandi, R. Messalem, Solar-driven desalination with reverse osmosis: the state of the art, Desal. Water Treat., 7 (2009) 285–296.
  8. H. Al-Hinai, M. Al-Nassri, B. Jubran, Effect of climatic, design and operational parameters on the yield of a simple solar still, Energy Convers. Manage., 43 (2002) 1639–1650.
  9. A. Madani, G. Zaki, Yield of solar stills with porous basins, Appl. Energy, 52 (1995) 273–281.
  10. H. Sharon, C. Prabha, R. Vijay, A. Niyas, S. Gorjian, Assessing suitability of commercial fibre reinforced plastic solar still for sustainable potable water production in rural India through detailed energy-exergy-economic analyses and environmnetal impacts, J. Environ. Manage., 295 (2021) 113034, doi:10.1016/j.jenvman.2021.113034.
  11. A. Tiwari, A. Somwanshi, Techno-economic analysis of mini solar distillation plants integrated with reservoir of garden fountain for hot and dry climate of Jodhpur (India), Sol. Energy, 160 (2018) 216–224.
  12. T. Arunkumar, K. Raj, D. Denkenberger, R. Velraj, Heat carrier nanofluids in solar still – a review, Desal. Water Treat., 130 (2018) 1–16.
  13. S. K. Hota, G. Diaz, Assessment of pyrolytic biochar as a solar absorber material for cost-effective water evaporation enhancement, Environ. Eng. Sci., (2021), doi: 10.1089/ees.2020.0472.
  14. A. Zeiny, H. Jin, G. Lin, P. Song, D. Wen, Solar evaporation via nanofluids: a comparative study, Renewable Energy, 122 (2018) 443–454.
  15. S. Sharshir, G. Peng, L. Wu, N. Yang, F. Essa, A. Elsheikh, S. Mohamed, A. Kabeel, Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study, Appl. Therm. Eng., 113 (2017) 684–693.
  16. T. Elango, A. Kanna, K. Murugavel, Performance study on single basin single slope solar still with different water nanofluids, Desalination, 360 (2015) 45–51.
  17. L. Sahota, S. Arora, H. Singh, S. Sahoo, Thermo-physical characteristics of passive double slope solar still loaded with MWCNTs and Al2O3-water based nanofluid, Mater. Today: Proc., 32 (2020) 344–349.
  18. G. Narayan, M. Sharqawy, H. Mostafa, J. Lienhard, S. Zubair, Thermodynamic analysis of humidification dehumidification desalination cycles, Desal. Water Treat., 16 (2010) 339–353.
  19. M. Jones, I. Odeh, M. Haddad, A. Mohammad, J. Quinn, Economic analysis of photovolatic (PV) powered water pumping and desalination without energy storage for agriculture, Desalination, 387 (2016) 35–45.
  20. N. Ahmad, A. Sheikh, P. Gandhidasan, M. Elshafie, Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: a case study for Dhahran city, Saudi Arabia, Renewable Energy, 75 (2015) 433–447.
  21. N. Al-Bastaki, A. Abbas, Long-term performance of an industrial water desalination plant, Chem. Eng. Process., 43 (2004) 555–558.
  22. G. Tiwari, S. Shukla, S. Singh, Computer modeling of passive/active solar stills by using inner glass temperature, Desalination, 154 (2003) 171–185.
  23. M. Sharqawy, M. Antar, S. Zubair, A. Elbashir, Optimum thermal design of humidification dehumidification desalination systems, Desalination, 349 (2014) 10–21.
  24. A. Al-Zahrani, A. Orfi, Z. Al-Suhaibani, H. Salim, Al-Ansary, Thermodynamic analysis of a reverse osmosis desalination unit with energy recovery system, Procedia Eng. SWEE2011, 33 (2012) 404–414.
  25. S. Hota, G. Diaz, Activated carbon dispersion as absorber for solar water evaporation: a parametric analysis, Sol. Energy, 184 (2019) 40–51.
  26. S. Hota, G. Diaz, Enhancing solar water evaporation with activated carbon, MRS Adv., (2020) 741–750, doi:10.1557/ adv.2020.267.
  27. S. Kumar, G. Tiwari, Analytical expression for instantaneous exergy efficiency of a shallow basin passive solar still, Int. J. Therm. Sci., 50 (2011) 2543–2549.
  28. A. Robles, V. Duong, A. Martin, J. Guadarrama, G. Diaz, Aluminum minichannel solar water heater performance under year round weather conditions, Sol. Energy, 110 (2014) 356–364.
  29. S. Hota, J. Perez, G. Diaz, Effect of Geometric Configuration and Back Plate Addition in Minichannel Solar Collectors, Conference: ASME 2018 International Mechanical Engineering Congress and Exposition, 2018.
  30. G. Tina, S. Scrofani, Electrical and Thermal Model for PV Module Temperature Evaluation, MELECON 2008 – The 14th IEEE Mediterranean Electrotechnical Conference, IEEE, Ajaccio, France, 2008.
  31. T. Neises, S. Klein, D. Rendl, Development of a thermal model for photovoltaic modules and analysis of NOCT guidelines, J. Sol. Energy Eng., 134 (2011) 01009.
  32. M. Hammami, S. Torretti, F. Grimaccia, G. Grandi, Thermal and performance analysis of a photovoltaic module with an integrated energy storage system, Appl. Sci., 7 (2017) 1107.
  33. S. Lawrence, S. Gupta, G. Tiwari, Experimental validation of thermal analysis of solar still with dye, Int. J. Sol. Energy, 6 (1988) 291–305.
  34. Dupont, Reverse Osmosis Membranes Technical Manual, Dupont FilmtecTM, 2020.
  35. J. Miller, J. Lienhard, Impact of extraction on a humidificationdehumidification desalination system, Desalination, 313 (2013) 87–96.
  36. W. Soto, S. Klein, W. Beckman, Improvmeent and validation of a model for photovoltaic array performance, Sol. Energy, 80 (2006) 78–88.
  37. Y.-Y. Lu, Y.-D. Hu, X.-L. Zhang, L.-Y. Wu, Q.-Z. Liu, Optimum design of reverse osmosis system under different feed concentration and product specification, J. Membr. Sci., 287 (2007) 219–229.
  38. R. Semiat, Energy issues in desalination processes, Environ. Sci. Technol., 42 (2008) 8193–8201.
  39. M. Alhaj, G. Al-Ghamdi, Why is powering thermal desalination with concentrated solar power expensive? Assessing economic feasibility and market commercialization barriers, Sol. Energy, 189 (2019) 480–490.
  40. S. Karki, K. Haapala, B. Fronk, Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers, Appl. Energy, 254 (2019) 113649.
  41. D. Trier, C. Skov, S. SØrensen, F. Bava, Solar District Heating Trends and Possibilities – Characteristics of Ground-Mounted Systems for Screening of Land Use Requirements and Feasibility, SHC: Solar Heat and Energy in Urban Environments, 2018.
  42. Z. Tian, B. Perers, S. Furbo, J. Fan, Thermo-economic optimization of a hybrid solar disctirct heating plant with flat plate collectors and parabolic trough collectors in series, Energy Convers. Manage., 165 (2018) 92–101.
  43. D. Feldman, R. Margolis, Q2/Q3 2020 Solar Industry Update, NREL, 2020.
  44. A. Malek, M. Hawlader, J. Ho, Design and economics of RO seawater desalination, Desalination, 105 (1996) 245–261.
  45. A. Zurita, C. Mata-Torres, C. Valenzuela, C. Felbol, J. Cardemil, A. Guzman, R. Escobar, Techno-economic evaluation of a hybrid CSP+PV plant integrated with thermal energy storage and a large-scale battery energy storage system for base generations, Sol. Energy, 173 (2018) 1262–1277.
  46. M. Ashby, Appendix-A. Data for Engineering Materials, in Materials Selection in Mechanical Design (4th ed.), Butterworth- Heinemann, Oxford, 2011, pp. 495–523.
  47. H. El-Dessouky, H. Ettouney, Chapter 10 – Economic Analysis of Desalination Processes, In: Fundamentals of Salt Water Desalination, Elsevier Science, 2002, pp. 503–524.
  48. K. Thomas, Overview of Village Scale, Renewable Energy Powered Desalination, NREL, 1997.
  49. B. Widyolar, L. Jiang, J. Brinkley, S. Hota, J. Ferry, G. Diaz, R. Winston, Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics, Appl. Energy, 268 (2020) 114894.
  50. M. Gumustas, C. Sengel-Turk, A. Gumustas, S. Ozkan, B. Uslu, Chapter 5 – Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems, In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, Elsevier, 2017, pp. 67–108.
  51. M. Gupta, V. Singh, R. Kumar, Z. Said, A review on thermophysical properties of nanofluids and heat transfer applications, Renewable Sustainable Energy Rev., 74 (2017) 638–670.