References

  1. H. Bacelo, A.M. Pintor, S.C. Santos, R.A. Boaventura, C.M. Botelho, Performance and prospects of different adsorbents for phosphorus uptake and recovery from water, Chem. Eng. Technol., 381 (2020) 122566 (1–18), doi: 10.1016/j.cej.2019.122566.
  2. J. Łożyńska, A. Bańkowska-Sobczak, Z. Popek, J.A. Dunalska, Selection of P-reactive materials for treatment of hypolimnetic water withdrawn from eutrophic lakes, Ecohydrol. Hydrobiol., 20 (2020) 276–288.
  3. M. Kasprzyk, M. Gajewska, Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P, Sci. Total Environ., 650 (2019) 249–256.
  4. T. Kirkkala, A.-M. Ventelä, M. Tarvainen, Fosfilt filters in an agricultural catchment: a long-term field-scale, Agric. Food Sci., 21 (2012) 237–246.
  5. O. Eljamal, I.P. Thompson, I. Maamoun, T. Shubair, K. Eljamal, K. Lueangwattanapong, Y. Sugihara, Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal, J. Mol. Liq., 299 (2020) 112144, doi: 10.1016/j. molliq.2019.112144.
  6. D. Verheyen, N. Van Gaelen, B. Ronchi, O. Batelaan, E. Struyf, G. Govers, R. Merckx, J. Diels, Dissolved phosphorus transport from soil to surface water in catchments with different land use, Ambio, 44 (2015) 228–240.
  7. EC 2020, Commission Recommendation for Poland’s CAP Strategic Plan. Available at:
    https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A52020SC0389 (accessed April 17, 2021).
  8. R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable reactive barrier for groundwater remediation, J. Ind. Eng. Chem., 14 (2008) 145–156.
  9. A.H.A. Faisal, Z.T. Abd Ali, Groundwater protection from lead contamination using granular dead anaerobic sludge biosorbent as permeable reactive barrier, Desal. Water Treat., 57 (2016) 3891–3903.
  10. USEPA, Permeable Reactive Barrier Technologies for Contaminant Remediation, EPA/600/R-98/125, United States Environmental Protection Agency, Washington, DC, 1998.
  11. S.J. Liu, Z.Y. Zhao, J. Li, J. Wang, Y. Qi, An anaerobic two-layer permeable reactive biobarrier for the remediation of nitratecontaminated groundwater, Water Res., 47 (2013) 5977–5985.
  12. W. Frątczak, D. Michalska-Hejduk, M. Zalewski, K. Izydorczyk, Effective phosphorous reduction by a riparian plant buffer zone enhanced with a limestone-based barrier, Ecol. Eng., 130 (2019) 94–100.
  13. C. Penn, I. Chagas, A. Klimeski, G. Lyngsie, A review of phosphorus removal structures: how to assess and compare their performance, Water, 9 (2017) 583 (1–22), doi: 10.3390/w9080583.
  14. A. Safonov, N. Popova, N. Andrushenko, K. Boldyrev, N. Yushin, I. Zinicovscaia, Investigation of materials for reactive permeable barrier in removing cadmium and chromium(VI) from aquifer near a solid domestic waste landfill, Environ. Sci. Pollut. Res., 28 (2021) 4645–4659.
  15. A.K. Thakur, M. Vithanage, D. Das, M. Kumar, A review on design, material selection, mechanism, and modeling of permeable reactive materials for community-scale groundwater treatment, Environ. Technol. Innovation, 19 (2020) 100917 (1–20), doi: 10.1016/j.eti.2020.100917.
  16. PN-EN 1097-3:2000 Tests for Mechanical and Physical Properties of Aggregates. Determination of Loose Bulk Density and Voids (in Polish).
  17. PN-EN 1936:2010 Equivalent to EN 1936:2006 Natural Stone Test Methods. Determination of Real Density and Apparent Density, and of Total and Open Porosity (in Polish).
  18. Y.S. Ho, D. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  19. G. McKey, Use of Adsorbents for the Removal of Pollutants from Wastewater, CRC Press Inc., Tokyo, 1996.
  20. M.L. Miller, J.H. Bhadha, G.A. O’Connor, J.W. Jawitz, J. Mitchell, Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses, Chemosphere, 83 (2011) 978–983.
  21. A. Bus, A. Karczmarczyk, A. Baryła, Permeable reactive barriers for preventing water bodies from a phosphorus-polluted agricultural runoff-column experiment, Water, 11 (2019) 432 (1–13), doi: 10.3390/w11030432.
  22. A. Jamieson, C.A. Madramootoo, P. Enright, Phosphorus losses in surface and subsurface runoff from a snowmelt event on an agricultural field in Quebec, Can. Biosyst. Eng., 45 (2003) 1.1–1.7.
  23. A. Mittal, R. Singh, S. Chakma, G. Goel, Permeable reactive barrier technology for the remediation of groundwater contaminated with nitrate and phosphate resulted from pit-toilet leachate, J. Water Process Eng., 37 (2020) 101471, doi: 10.1016/j.jwpe.2020.101471.
  24. K. Riahi, S. Chaabane, B.B. Thayer, A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode, J. Saudi Chem. Soc., 21 (2013) 143–152.
  25. Y. Zhang, H. Li, Y. Zhang, F. Song, X. Cao, X. Lyu, Y. Zhang, C.J. Crittenden, Statistical optimization and batch studies on adsorption of phosphate using Al-eggshell, Adsorpt. Sci. Technol., 36 (2018) 999–1017.
  26. S.J. Allen, G. McKay, K.Y.H. Khader, Equilibrium adsorption isotherms for basic dyes onto lignite, J. Chem. Technol. Biotechnol., 45 (1989) 291–302.
  27. Z. Guo, J. Li, Z. Guo, Q. Guo, B. Zhu, Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process, Environ. Sci. Pollut. Res., 24 (2017) 14525–14536.
  28. K. Kang, C.G. Lee, J.W. Choi, S.G. Hong, S.J. Park, Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity, Water Air Soil Pollut., 228 (2017) 1–16.
  29. A. Bus, A. Karczmarczyk, Kinetic studies on removing phosphate from synthetic solution and river water by reactive material in a form of suspended reactive filters, Desal. Water Treat., 136 (2018) 237–244.
  30. N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste, Chem. Eng. J., 147 (2009) 87–96.
  31. E. Canga, B.V. Iversen, C. Kjaergaard, A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters, Water Air Soil Pollut., 225 (2014) 1794 (1–13),
    doi:10.1007/s11270-013-1794-8.
  32. K. Jóźwiakowski, M. Gajewska, A. Pytka, M. Marzec, M. Gizińska, A. Jucherski, A. Walczowski, M. Nastawny, A. Kamińska, S. Baran, Influence of the particle size of carbonatesiliceous rock on the efficiency of phosphorous removal from domestic wastewater, Ecol. Eng., 98 (2017) 290–296.