References
- H. Bacelo, A.M. Pintor, S.C. Santos, R.A. Boaventura,
C.M. Botelho, Performance and prospects of different adsorbents
for phosphorus uptake and recovery from water, Chem. Eng.
Technol., 381 (2020) 122566 (1–18), doi: 10.1016/j.cej.2019.122566.
- J. Łożyńska, A. Bańkowska-Sobczak, Z. Popek, J.A. Dunalska,
Selection of P-reactive materials for treatment of hypolimnetic
water withdrawn from eutrophic lakes, Ecohydrol. Hydrobiol.,
20 (2020) 276–288.
- M. Kasprzyk, M. Gajewska, Phosphorus removal by application
of natural and semi-natural materials for possible recovery
according to assumptions of circular economy and closed
circuit of P, Sci. Total Environ., 650 (2019) 249–256.
- T. Kirkkala, A.-M. Ventelä, M. Tarvainen, Fosfilt filters in an
agricultural catchment: a long-term field-scale, Agric. Food Sci.,
21 (2012) 237–246.
- O. Eljamal, I.P. Thompson, I. Maamoun, T. Shubair, K. Eljamal,
K. Lueangwattanapong, Y. Sugihara, Investigating the design
parameters for a permeable reactive barrier consisting of
nanoscale zero-valent iron and bimetallic iron/copper for
phosphate removal, J. Mol. Liq., 299 (2020) 112144, doi: 10.1016/j.
molliq.2019.112144.
- D. Verheyen, N. Van Gaelen, B. Ronchi, O. Batelaan, E. Struyf,
G. Govers, R. Merckx, J. Diels, Dissolved phosphorus transport
from soil to surface water in catchments with different land use,
Ambio, 44 (2015) 228–240.
- EC 2020, Commission Recommendation for Poland’s CAP
Strategic Plan. Available at:
https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A52020SC0389 (accessed April
17, 2021).
- R. Thiruvenkatachari, S. Vigneswaran, R. Naidu, Permeable
reactive barrier for groundwater remediation, J. Ind. Eng.
Chem., 14 (2008) 145–156.
- A.H.A. Faisal, Z.T. Abd Ali, Groundwater protection from
lead contamination using granular dead anaerobic sludge
biosorbent as permeable reactive barrier, Desal. Water Treat.,
57 (2016) 3891–3903.
- USEPA, Permeable Reactive Barrier Technologies for
Contaminant Remediation, EPA/600/R-98/125, United States
Environmental Protection Agency, Washington, DC, 1998.
- S.J. Liu, Z.Y. Zhao, J. Li, J. Wang, Y. Qi, An anaerobic two-layer
permeable reactive biobarrier for the remediation of nitratecontaminated
groundwater, Water Res., 47 (2013) 5977–5985.
- W. Frątczak, D. Michalska-Hejduk, M. Zalewski, K. Izydorczyk,
Effective phosphorous reduction by a riparian plant buffer zone
enhanced with a limestone-based barrier, Ecol. Eng., 130 (2019)
94–100.
- C. Penn, I. Chagas, A. Klimeski, G. Lyngsie, A review of phosphorus
removal structures: how to assess and compare their
performance, Water, 9 (2017) 583 (1–22), doi: 10.3390/w9080583.
- A. Safonov, N. Popova, N. Andrushenko, K. Boldyrev,
N. Yushin, I. Zinicovscaia, Investigation of materials for reactive
permeable barrier in removing cadmium and chromium(VI)
from aquifer near a solid domestic waste landfill, Environ. Sci.
Pollut. Res., 28 (2021) 4645–4659.
- A.K. Thakur, M. Vithanage, D. Das, M. Kumar, A review
on design, material selection, mechanism, and modeling of
permeable reactive materials for community-scale groundwater
treatment, Environ. Technol. Innovation, 19 (2020) 100917
(1–20), doi: 10.1016/j.eti.2020.100917.
- PN-EN 1097-3:2000 Tests for Mechanical and Physical Properties
of Aggregates. Determination of Loose Bulk Density and Voids
(in Polish).
- PN-EN 1936:2010 Equivalent to EN 1936:2006 Natural Stone
Test Methods. Determination of Real Density and Apparent
Density, and of Total and Open Porosity (in Polish).
- Y.S. Ho, D. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- G. McKey, Use of Adsorbents for the Removal of Pollutants
from Wastewater, CRC Press Inc., Tokyo, 1996.
- M.L. Miller, J.H. Bhadha, G.A. O’Connor, J.W. Jawitz, J. Mitchell,
Aluminum water treatment residuals as permeable reactive
barrier sorbents to reduce phosphorus losses, Chemosphere,
83 (2011) 978–983.
- A. Bus, A. Karczmarczyk, A. Baryła, Permeable reactive barriers
for preventing water bodies from a phosphorus-polluted
agricultural runoff-column experiment, Water, 11 (2019) 432
(1–13), doi: 10.3390/w11030432.
- A. Jamieson, C.A. Madramootoo, P. Enright, Phosphorus losses
in surface and subsurface runoff from a snowmelt event on
an agricultural field in Quebec, Can. Biosyst. Eng., 45 (2003)
1.1–1.7.
- A. Mittal, R. Singh, S. Chakma, G. Goel, Permeable reactive
barrier technology for the remediation of groundwater
contaminated with nitrate and phosphate resulted from
pit-toilet leachate, J. Water Process Eng., 37 (2020) 101471,
doi: 10.1016/j.jwpe.2020.101471.
- K. Riahi, S. Chaabane, B.B. Thayer, A kinetic modeling study
of phosphate adsorption onto Phoenix dactylifera L. date palm
fibers in batch mode, J. Saudi Chem. Soc., 21 (2013) 143–152.
- Y. Zhang, H. Li, Y. Zhang, F. Song, X. Cao, X. Lyu, Y. Zhang,
C.J. Crittenden, Statistical optimization and batch studies
on adsorption of phosphate using Al-eggshell, Adsorpt. Sci.
Technol., 36 (2018) 999–1017.
- S.J. Allen, G. McKay, K.Y.H. Khader, Equilibrium adsorption
isotherms for basic dyes onto lignite, J. Chem. Technol.
Biotechnol., 45 (1989) 291–302.
- Z. Guo, J. Li, Z. Guo, Q. Guo, B. Zhu, Phosphorus removal from
aqueous solution in parent and aluminum-modified eggshells:
thermodynamics and kinetics, adsorption mechanism,
and diffusion process, Environ. Sci. Pollut. Res., 24 (2017)
14525–14536.
- K. Kang, C.G. Lee, J.W. Choi, S.G. Hong, S.J. Park, Application
of thermally treated crushed concrete granules for the removal
of phosphate: a cheap adsorbent with high adsorption capacity,
Water Air Soil Pollut., 228 (2017) 1–16.
- A. Bus, A. Karczmarczyk, Kinetic studies on removing
phosphate from synthetic solution and river water by reactive
material in a form of suspended reactive filters, Desal. Water
Treat., 136 (2018) 237–244.
- N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic
study of phosphate adsorption on iron hydroxide-eggshell
waste, Chem. Eng. J., 147 (2009) 87–96.
- E. Canga, B.V. Iversen, C. Kjaergaard, A simplified transfer
function for estimating saturated hydraulic conductivity of
porous drainage filters, Water Air Soil Pollut., 225 (2014) 1794
(1–13),
doi:10.1007/s11270-013-1794-8.
- K. Jóźwiakowski, M. Gajewska, A. Pytka, M. Marzec,
M. Gizińska, A. Jucherski, A. Walczowski, M. Nastawny,
A. Kamińska, S. Baran, Influence of the particle size of carbonatesiliceous
rock on the efficiency of phosphorous removal
from domestic wastewater, Ecol. Eng., 98 (2017) 290–296.