References

  1. S. Shaikh, K. Thomas, S. Zuhair, An exploratory study of e-waste creation and disposal: upstream considerations, Resour. Conserv. Recycl., 155 (2020) 104662, doi: 10.1016/j. resconrec.2019.104662.
  2. X. Zeng, R. Gong, W.-Q. Chen, J. Li, Uncovering the recycling potential of ‘New’ WEEE in China, Environ. Sci. Technol., 50 (2016) 1347–1358.
  3. B. Boubellouta, S. Kusch-Brandt, Relationship between economic growth and mismanaged e-waste: panel data evidence from 27 EU countries analyzed under the Kuznets curve hypothesis, Waste Manage., 120 (2021) 85–97.
  4. K. Abeliotis, K. Boikou, C. Chroni, K. Kalafata, H. Angelakopoulos, K. Lasaridi, WEEE preparing for reuse in Greece: potential and initiatives, Waste Biomass Valorization, 12 (2021) 2959–2968.
  5. P. Tanskanen, Management and recycling of electronic waste, Acta Mater., 61 (2013) 1001–1011.
  6. H. Ismail, M.M. Hanafiah, A review of sustainable e-waste generation and management: present and future perspectives, J. Environ. Manage., 264 (2020) 110495, doi: 10.1016/j. jenvman.2020.110495.
  7. A. Akcil, I. Agcasulu, B. Swain, Valorization of waste LCD and recovery of critical raw material for circular economy: a review, Resour. Conserv. Recycl., 149 (2019) 622–637.
  8. S. Zhang, Y. Gu, A. Tang, B. Li, B. Li, D. Pan, Y. Wu, Forecast of future yield for printed circuit board resin waste generated from major household electrical and electronic equipment in China, J. Cleaner Prod., 283 (2021) 124575, doi: 10.1016/j. jclepro.2020.124575.
  9. R. Hischier, H.W. Boni, Combining environmental and economic factors to evaluate the reuse of electrical and electronic equipment – a Swiss case study, Resour. Conserv. Recycl., 166 (2021) 105307, doi:10.1016/j.resconrec.2020. 105307.
  10. L. Rocchetti, F. Vegliò, B. Kopacek, F. Beolchini, Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant, Environ. Sci. Technol.,
    47 (2013) 1581–1588.
  11. Z. Sun, H. Cao, Y. Xiao, J. Sietsma, W. Jin, H. Agterhuis, Y. Yang, Toward sustainability for recovery of critical metals from electronic waste: the hydrochemistry processes, ACS Sustainable Chem. Eng., 5 (2017) 21–40.
  12. C. Hagelüken, C.W. Corti, Recycling of gold from electronics: cost-effective use through ‘Design for Recycling’, Gold Bull., 43 (2010) 209–220.
  13. J. Liu, Z. Deng, H. Yu, L. Wang, Ferrocene-based metalorganic framework for highly efficient recovery of gold from WEEE, Chem. Eng. Technol., 410 (2021) 128360, doi: 10.1016/j.cej.2020.128360.
  14. M.P. Cenci, F.C. Dal Berto, B.W. Castillo, H.M. Veit, Precious and critical metals from wasted LED lamps: characterization and evaluation, Environ. Technol., 10 (2020) 1–12.
  15. R.G. Charles, P. Douglas, M. Dowling, G. Liversage, L.M. Davies, Towards increased recovery of critical raw materials from WEEE – evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes, Resour. Conserv. Recycl., 161 (2020) 104923, doi:10.1016/j.resconrec.2020.104923.
  16. M. Kaya, Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes, Waste Manage., 57 (2016) 64–90.
  17. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment, WEEE, Official Journal of the European Union L, 197, 38–71.
  18. O.S. Shittu, I.D. Williams, P.J. Shaw, Global E-waste management: can WEEE make a difference? a review of e-waste trends, legislation, contemporary issues and future challenges, Waste Manage., 120 (2021) 549–563.
  19. D. Ibanescu, D. Cailean Gavrilescu, C. Teodosiu, S. Fiore, Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries, Waste Manage., 73 (2017) 39–53.
  20. M.D. Rao, K.K. Singh, C.A. Morrison, J.B. Love, Challenges and opportunities in the recovery of gold from electronic waste, RSC Adv., 10 (2020) 4300–4309.
  21. M. Sethurajan, E.D. van Hullebusch, D. Fontana, A. Akcil, H. Deveci, B. Batinic, J.P. Leal, T.A. Gasche, M.A. Kucuker, K. Kuchta, I.F.F. Neto, H.M.V.M. Soares, A. Chmielarz, Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review, Crit. Rev. Env. Sci. Technol., 49 (2019) 212–275.
  22. M. Assadian, M.H. Idris, S. Morteza, G. Shahri, B. Gholampour, Gold recovery from WEEE by chlorine system, Appl. Mech. Mater., 330 (2013) 123–125.
  23. V.S. Kislik, Modern and Future Trends in Fundamentals of Solvent Extraction, Solvent Extraction: Classical and Novel Approaches, Amsterdam, 2012, pp. 439–450.
  24. R.A. Milescu, M.L. Segatto, A. Stahl, C.R. McElroy, T.J. Farmer, J.H. Clark, V.G. Zuin, Sustainable single-stage solid–liquid extraction of hesperidin and rutin from agro-products using cyrene, ACS Sustainable Chem. Eng., 8 (2020) 18245–18257.
  25. D. Kealey, P.J. Haines, Chemia Analityczna, Krótkie wykłady, Warszawa, 2019, pp. 120–121.
  26. B. Pośpiech, Studies on extraction and permeation of cadmium(II) using Cyphos IL-104 as selective extractant and ion carrier, Hydrometallurgy, 154 (2015) 88–94.
  27. C.-V. Gherasim, M. Cristea, C.-V. Grigoras, G. Bourceanu, New polymer inclusion membrane. Preparation and characterization, Dig. J. Nanomater. Biostruct., 6 (2011) 1507–1516.
  28. Y.Y.N. Bonggotgetsakul, M. Ashokkumar, R.W. Cattrall, S.D. Kolev, The use of sonication to increase extraction rate in polymer inclusion membranes. An application to the extraction of gold(III), J. Membr. Sci., 365 (2010) 242–247.
  29. D. Bożejewicz, K. Witt, M.A. Kaczorowska, The comparison of the removal of copper(II) and zinc(II) ions from aqueous solution using 2,6-diaminopyridine in a polymer inclusion membrane and in a classic solvent extraction, Desal. Water Treat., 214 (2021) 194–202.
  30. M. Ulewicz, U. Lesinska, M. Bochenska, Transport of lead across polymer inclusion membrane with p-tert-butylcalix[4]arene derivatives, Physicochem. Probl. Miner. Process., 44 (2010) 245–256.
  31. M. Baczyńska, M. Rzelewska, M. Regel-Rosocka, M. Wiśniewski, Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier, Chem. Pap., 70 (2016) 172–179.
  32. A. Casadella, O. Schaetzle, K. Nijmeijer, K. Loos, Polymer Inclusion Membranes (PIM) for the recovery of potassium in the presence of competitive cations, Polymers, 8 (2016) 76, doi: 10.3390/polym8030076.
  33. E. Radzyminska-Lenarcik, M. Ulewicz, The use of 1-alkylimidazoles for selective separation of zinc ions in the transport process across a polymer inclusion membrane, Physicochem. Probl. Miner. Process., 50 (2014) 131–142.
  34. D. Wang, J. Hu, D. Liu, Q. Chen, J. Li, Selective transport and simultaneous separation of Cu(II), Zn(II) and Mg(II) using a dual polymer inclusion membrane system, J. Membr. Sci., 52 (2017) 206–213.
  35. H.I. Turgut, V. Eyupoglu, R.A. Kumbasar, The comprehensive investigation of the room temperature ionic liquid additives in PVC based polymer inclusion membrane for Cr(VI) transport, J. Vinyl Add. Tech., 25 (2019) E107–E119, doi: 10.1002/ vnl.21649.
  36. T. Zh. Sadyrbaeva, Gold(III) recovery from non-toxic electrolytes using hybrid electrodialysis–electrolysis process, Sep. Purif. Technol., 86 (2012) 262–265.
  37. P.P. Natesh, S. Govindaradjane, S.P. Kumar, Methodological review on recovery of gold from E-waste in India, J. Chem. Pharm. Res., 8 (2015) 268–272.
  38. C.K. Lee, K.-I. Rhee, H.-J. Sohn, Recovery of gold from electronic scrap by hydrometallurgical process,
    J. Korean Inst. Resour. Recyl., 6 (1997) 36–40.
  39. A.C. Kasper, H.M. Veit, Gold recovery from printed circuit boards of mobile phones scraps using a leaching solution alternative to cyanide, Braz. J. Chem. Eng., 35 (2018) 931–942.
  40. M.A. Dehchenari, S. Hosseinpoor, R. Aali, N. Salighehdar Iran, M. Mehdipour, Simple method for extracting gold from electrical and electronic wastes using hydrometallurgical process, Environ. Health Eng. Manage.,
    4 (2016) 55–58.
  41. A. Ashiq, J. Kulkarni, M. Vithanage. Chapter 10 – Hydrometallurgical Recovery of Metals From E-waste, M.N.V. Prasad, M. Vithanage, Eds., Electronic Waste Management and Treatment Technology,
    Butterworth-Heinemann, 2019, pp. 225–246, ISBN 9780128161906.
  42. R. Wang, C. Zhang, Y. Zhao, Y. Zhou, E. Ma, J. Bai, J. Wang, Recycling gold from printed circuit boards
    gold-plated layer of waste mobile phones in “mild aqua regia” system, J. Cleaner Prod., 278 (2021) 123597, doi: 10.1016/j.jclepro.2020.123597.
  43. Y. Wu, Q. Fang, X. Yi, G. Liu, R.-W. Li, Recovery of gold from hydrometallurgical leaching solution of electronic waste via spontaneous reduction by polyaniline, Prog. Nat. Sci.: Mater. Int., 27 (2017) 514–519.
  44. A. Tuncuk, Lab scale optimization and two-step sequential bench scale reactor leaching tests for the chemical dissolution of Cu, Au and Ag from waste electrical and electronic equipment (WEEE), Waste Manage., 95 (2019) 636–643.
  45. A.K. Awasthi, J. Li, An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE, Resour. Conserv. Recycl., 126 (2017) 228–239.
  46. J. Rydberg, M. Cox, C. Musikas, G.R. Choppin, Principles and Practices of Solvent Extraction, 2nd ed., Marcel Dekker, New York, 2004, p. 584.
  47. A. Matthew Wilson, P.J. Bailey, P.A. Tasker, J.R. Turkington, R.A. Grant, J.B. Love, Solvent extraction: the coordination chemistry behind extractive metallurgy, Chem. Soc. Rev., 43 (2014) 123–134.
  48. E.D. Doidge, L.M.M. Kinsman, Y. Jo. I. Carson, A.J. Duffy, I.A. Kordas, E. Shao, P.A. Tasker, B.T. Ngwenya, C.A. Morrison, J.B. Love, Evaluation of simple amides in the selective recovery of gold from secondary sources by solvent extraction, ACS Sustainable Chem. Eng., 7 (2019) 15019–15029.
  49. E.D. Doidge, I. Carson, P.A. Tasker, R.J. Ellis, C.A. Morrison, J.B. Love, A simple primary amide for the selective recovery of gold from secondary resources, J. German Chem. Soc., 55 (2016) 12436–12439.
  50. T. Oshima, T. Koyama, A.N. Otsuki, A comparative study on the extraction of Au(III) using cyclopentyl methyl ether, dibutyl carbitol, and methyl isobutyl ketone in acidic chloride media, Solvent Extr. Ion Exch., 39 (2021) 477–490.
  51. A. Alzate, M.E. López, C. Serna, Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate, Waste Manage., 57 (2016) 113–120.
  52. K. Campos, T. Vincent, P. Bunio, A. Trochimczuk, E. Guibal, Gold recovery from HCl solutions using
    Cyphos IL-101 (a quaternary phosphonium ionic liquid) immobilized in biopolymer capsules, Solvent Extr. Ion Exch., 26 (2008) 570–601.
  53. J.C. Aguilar Cordero, M. Sanchez-Castellanos, E. Rodriguez de San Miguel, J. de Gyves, Cd(II) and Pb(II) extraction and transport modeling in SLM and PIM systems using Kelex 100 as carrier, J. Membr. Sci., 190 (2001) 107–118.
  54. M. Macias, E.R. de San Miguel, Optimization of Ni(II) facilitated transport from aqueous solutions using a polymer inclusion membrane, Water Air Soil Pollut., 232 (2021), doi: 10.1007/s11270-021-04998-4.
  55. E.R. de San Miguel, A.V. Garduño-García, J.C. Aguilar, J. de Gyves, Gold(III) transport through polymer inclusion membranes: efficiency factors and pertraction mechanism using Kelex 100 as carrier, Ind. Eng. Chem. Res., 46 (2007) 2861–2869.
  56. E.R. de San Miguel, A.V. Garduno-Garcia, M.E. Nunez-Gaytan, J.C. Aguilar, J. de Gyves, Application of an organic-inorganic hybrid membrane for selective gold(III) permeation, J. Membr. Sci., 307 (2008) 1–9.
  57. H. Mahandra, R. Singh, B. Gupta, Liquid–liquid extraction studies on Zn(II) and Cd(II) using phosphonium ionic liquid (Cyphos IL-104) and recovery of zinc from zinc plating mud, Sep. Purif. Technol., 177 (2017) 281–292.
  58. Z. Zhu, K. Tulpatowicz, Y. Pranolo, C.Y. Cheng, Solvent extraction of molybdenum and vanadium from sulphate solutions with Cyphos IL-101, Hydrometallurgy, 154 (2015) 72–77.
  59. A. Kumari, M.K. Sinha, S.K. Sahu, B.D. Pandey, Solvent extraction and separation of trivalent lanthanides using Cyphos IL-104, a novel phosphonium ionic liquid as extractant, Solvent Extr. Ion Exch., 34 (2016) 469–484.
  60. M.R. Yaftian, M.I.G.S. Almeida, R.W. Cattrall, S.D. Kolev, Selective extraction of vanadium(V) from sulfate solutions into a polymer inclusion membrane composed of poly(vinylidenefluoride-co- hexafluoropropylene) and Cyphos® IL 101, J. Membr. Sci., 545 (2018) 57–65.
  61. M. Baczyńska, M. Waszak, M. Nowicki, D. Prządka, S. Borysiak, M. Regel-Rosocka, Characterization of polymer inclusion membranes (PIMs) containing phosphonium ionic liquids as Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070–5082.
  62. B. Pospiech, Separation of cadmium(II), cobalt(II) and nickel(II) by transport through polymer inclusion membranes with phosphonium ionic liquid as ion carrier, Arch. Metall. Mater., 60 (2015) 2933–2938.
  63. Y.Y.N. Bonggotgetsakul, R.W. Cattrall, S.D. Kolev, Recovery of gold from aqua regia digested electronic scrap using a poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) based polymer inclusion membrane (PIM) containing Cyphos IL-104, J. Membr. Sci., 514 (2016) 274–281.
  64. Y.Y.N. Bonggotgetsakul, R.W. Cattrall, S.D. Kolev, Extraction of gold(III) from hydrochloric acid solutions with a PVC-based polymer inclusion membrane (PIM) containing Cyphos® IL 104, Membranes, 5 (2015) 903–914.
  65. F. Kubota, R. Kono, W. Yoshida, M. Sharaf, S.D. Kolev, M. Goto, Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant, Sep. Sci. Technol., 214 (2019) 156–161.
  66. L.F. Campo-Cobo, M.L. Perez-Urbano, T.M. Gutierrez-Valencia, O.L. Hoyos-Saavedra, G. Cuervo-Ochoa, Selective extraction of gold with polymeric inclusion membranes based on salen ligands with electron-accepting substituents, J. Inorg. Organomet. Polym., 31 (2021) 1–11, doi: 10.1007/s10904-021-01924-3.
  67. M.N. Ştefănuţ, Z. Űrmösi, A. Căta, P. Sfîrloagă, C. Tănasie, Studies for gold and silver recovery from waste electronic equipment, Rev. Roum. Chim., 58 (2013) 673–678.
  68. S. Laki, A. Arabi Shamsabadi, F. Seidi, M. Soroush, Sustainable recovery of silver from deactivated catalysts using a novel process combining leaching and emulsion liquid membrane techniques, Ind. Eng. Chem. Res., 57 (2018) 13821–13832.
  69. K. Shimojo, M. Goto, Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes, Anal. Chem., 76 (2004) 5039–5044.
  70. A. Nowik-Zajac, I. Zawierucha, C. Kozlowski, Selective removal of silver(I) using polymer inclusion membranes containing calixpyrroles, RSC Adv., 9 (2019) 31122–31132.
  71. A. Nowik-Zajac, I. Zawierucha, C. Kozlowski, Selective transport of Ag(I) through a polymer inclusion membrane containing a calix[4]pyrrole derivative from nitrate aqueous solutions, Int. J. Mol. Sci., 21 (2020) 5348, doi: 10.3390/ijms21155348.
  72. E. Radzyminska-Lenarcik, M. Ulewicz, I. Pyszka, Application of polymer inclusion membranes doped with alkylimidazole to separation of silver and zinc ions from model solutions and after battery leaching, Materials, 13 (2020) 3103, doi: 10.3390/ma13143103.
  73. T. Wongsawa, N. Traiwongsa, U. Pancharoen, K. Nootong, A review of the recovery of precious metals using ionic liquid extractants in hydrometallurgical processes, Hydrometalurgy, 198 (2020) 105488, doi:10.1016/j.hydromet.2020.105488.
  74. A. Cieszyńska, M. Wiśniewski, Extraction of palladium(II) from chloride solutions with Cyphos®IL 101/toluene mixtures as novel extractant, Sep. Purif. Technol., 73 (2010) 202–207.
  75. A. Cieszńska, M. Wiśniewski, Extractive recovery of palladium(II) from hydrochloric acid solutions with Cyphos®IL 104, Hydrometallurgy, 113–114 (2012) 79–85.
  76. M. Regel-Rosocka, M. Rzelewska, M. Baczyńska, M. Janus, M. Wiśniewski, Removal of palladium(II) from aqueous chloride solutions with Cyphos phosphonium ionic liquids as metal ion carriers for liquid–liquid extraction and transport across polymer inclusion membranes, Physicochem. Probl. Miner. Process., 51 (2015) 621–631.
  77. A.T.N. Fajar, F. Kubota, M.L. Firmansyah, M. Goto, Separation of palladium(II) and rhodium(III) using a polymer inclusion membrane containing a phosphonium-based ionic liquid carrier, Ind. Eng. Chem. Res., 58 (2019) 22334–22342.
  78. B. Pośpiech, Highly efficient facilitated membrane transport of palladium(II) ions from hydrochloric acid solutions through plasticizer membranes with Cyanex 471X, Physicochem. Probl. Miner. Process., 51 (2015) 281–291.
  79. M. Shao, S. Li, C. Jin, M. Chen, Z. Huang, Recovery of Pd(II) from hydrochloric acid medium by solvent extraction– direct electrodeposition using hydrophilic/hydrophobic ILs, ACS Omega, 5 (2020) 27188–27196.
  80. D. Bourgeois, V. Lacanau, R. Mastretta, C. Contino-Pepin, D. Meyer, A simple process for the recovery of palladium from wastes of printed circuit boards, Hydrometallurgy, 191 (2020) 105241, doi: 10.1016/j.hydromet.2019.105241.
  81. R. Jha, M.D. Rao, A. Meshram, H.R. Verma, K.K. Singh, Potential of polymer inclusion membrane process for selective recovery of metal values from waste printed circuit boards: a review, J. Cleaner Prod., 265 (2020) 121621, doi: 10.1016/j. jclepro.2020.121621.
  82. R.G. Charles, P. Douglas, I.L. Hallin, I. Matthews, G. Liversage, An investigation of trends in precious metal and copper content of RAM modules in WEEE: implications for long term recycling potential, Waste Manage., 60 (2017) 505–520.