References
- S. Shaikh, K. Thomas, S. Zuhair, An exploratory study of
e-waste creation and disposal: upstream considerations,
Resour. Conserv. Recycl., 155 (2020) 104662, doi: 10.1016/j.
resconrec.2019.104662.
- X. Zeng, R. Gong, W.-Q. Chen, J. Li, Uncovering the recycling
potential of ‘New’ WEEE in China, Environ. Sci. Technol.,
50 (2016) 1347–1358.
- B. Boubellouta, S. Kusch-Brandt, Relationship between
economic growth and mismanaged e-waste: panel data
evidence from 27 EU countries analyzed under the Kuznets
curve hypothesis, Waste Manage., 120 (2021) 85–97.
- K. Abeliotis, K. Boikou, C. Chroni, K. Kalafata,
H. Angelakopoulos, K. Lasaridi, WEEE preparing for reuse in
Greece: potential and initiatives, Waste Biomass Valorization,
12 (2021) 2959–2968.
- P. Tanskanen, Management and recycling of electronic waste,
Acta Mater., 61 (2013) 1001–1011.
- H. Ismail, M.M. Hanafiah, A review of sustainable e-waste
generation and management: present and future perspectives,
J. Environ. Manage., 264 (2020) 110495, doi: 10.1016/j.
jenvman.2020.110495.
- A. Akcil, I. Agcasulu, B. Swain, Valorization of waste LCD
and recovery of critical raw material for circular economy:
a review, Resour. Conserv. Recycl., 149 (2019) 622–637.
- S. Zhang, Y. Gu, A. Tang, B. Li, B. Li, D. Pan, Y. Wu, Forecast
of future yield for printed circuit board resin waste generated
from major household electrical and electronic equipment
in China, J. Cleaner Prod., 283 (2021) 124575, doi: 10.1016/j.
jclepro.2020.124575.
- R. Hischier, H.W. Boni, Combining environmental and
economic factors to evaluate the reuse of electrical and
electronic equipment – a Swiss case study, Resour. Conserv.
Recycl., 166 (2021) 105307, doi:10.1016/j.resconrec.2020.
105307.
- L. Rocchetti, F. Vegliò, B. Kopacek, F. Beolchini, Environmental
impact assessment of hydrometallurgical processes for metal
recovery from WEEE residues using a portable prototype plant,
Environ. Sci. Technol.,
47 (2013) 1581–1588.
- Z. Sun, H. Cao, Y. Xiao, J. Sietsma, W. Jin, H. Agterhuis,
Y. Yang, Toward sustainability for recovery of critical metals
from electronic waste: the hydrochemistry processes, ACS
Sustainable Chem. Eng., 5 (2017) 21–40.
- C. Hagelüken, C.W. Corti, Recycling of gold from electronics:
cost-effective use through ‘Design for Recycling’, Gold Bull.,
43 (2010) 209–220.
- J. Liu, Z. Deng, H. Yu, L. Wang, Ferrocene-based metalorganic
framework for highly efficient recovery of gold from
WEEE, Chem. Eng. Technol., 410 (2021) 128360, doi: 10.1016/j.cej.2020.128360.
- M.P. Cenci, F.C. Dal Berto, B.W. Castillo, H.M. Veit, Precious
and critical metals from wasted LED lamps: characterization
and evaluation, Environ. Technol., 10 (2020) 1–12.
- R.G. Charles, P. Douglas, M. Dowling, G. Liversage,
L.M. Davies, Towards increased recovery of critical raw
materials from WEEE – evaluation of CRMs at a component
level and pre-processing methods for interface optimisation
with recovery processes, Resour. Conserv. Recycl., 161 (2020)
104923, doi:10.1016/j.resconrec.2020.104923.
- M. Kaya, Recovery of metals and nonmetals from electronic
waste by physical and chemical recycling processes, Waste
Manage., 57 (2016) 64–90.
- Directive 2012/19/EU of the European Parliament and of
the Council of 4 July 2012 on Waste Electrical and Electronic
Equipment, WEEE, Official Journal of the European Union L,
197, 38–71.
- O.S. Shittu, I.D. Williams, P.J. Shaw, Global E-waste
management: can WEEE make a difference? a review of e-waste
trends, legislation, contemporary issues and future challenges,
Waste Manage., 120 (2021) 549–563.
- D. Ibanescu, D. Cailean Gavrilescu, C. Teodosiu, S. Fiore,
Assessment of the waste electrical and electronic equipment
management systems profile and sustainability in developed
and developing European Union countries, Waste Manage.,
73 (2017) 39–53.
- M.D. Rao, K.K. Singh, C.A. Morrison, J.B. Love, Challenges and
opportunities in the recovery of gold from electronic waste,
RSC Adv., 10 (2020) 4300–4309.
- M. Sethurajan, E.D. van Hullebusch, D. Fontana, A. Akcil,
H. Deveci, B. Batinic, J.P. Leal, T.A. Gasche, M.A. Kucuker,
K. Kuchta, I.F.F. Neto, H.M.V.M. Soares, A. Chmielarz, Recent
advances on hydrometallurgical recovery of critical and
precious elements from end of life electronic wastes - a review,
Crit. Rev. Env. Sci. Technol., 49 (2019) 212–275.
- M. Assadian, M.H. Idris, S. Morteza, G. Shahri, B. Gholampour,
Gold recovery from WEEE by chlorine system, Appl. Mech.
Mater., 330 (2013) 123–125.
- V.S. Kislik, Modern and Future Trends in Fundamentals of
Solvent Extraction, Solvent Extraction: Classical and Novel
Approaches, Amsterdam, 2012, pp. 439–450.
- R.A. Milescu, M.L. Segatto, A. Stahl, C.R. McElroy, T.J. Farmer,
J.H. Clark, V.G. Zuin, Sustainable single-stage solid–liquid
extraction of hesperidin and rutin from agro-products using
cyrene, ACS Sustainable Chem. Eng., 8 (2020) 18245–18257.
- D. Kealey, P.J. Haines, Chemia Analityczna, Krótkie wykłady,
Warszawa, 2019, pp. 120–121.
- B. Pośpiech, Studies on extraction and permeation of
cadmium(II) using Cyphos IL-104 as selective extractant and
ion carrier, Hydrometallurgy, 154 (2015) 88–94.
- C.-V. Gherasim, M. Cristea, C.-V. Grigoras, G. Bourceanu, New
polymer inclusion membrane. Preparation and characterization,
Dig. J. Nanomater. Biostruct., 6 (2011) 1507–1516.
- Y.Y.N. Bonggotgetsakul, M. Ashokkumar, R.W. Cattrall,
S.D. Kolev, The use of sonication to increase extraction rate in
polymer inclusion membranes. An application to the extraction
of gold(III), J. Membr. Sci., 365 (2010) 242–247.
- D. Bożejewicz, K. Witt, M.A. Kaczorowska, The comparison
of the removal of copper(II) and zinc(II) ions from aqueous
solution using 2,6-diaminopyridine in a polymer inclusion
membrane and in a classic solvent extraction, Desal. Water
Treat., 214 (2021) 194–202.
- M. Ulewicz, U. Lesinska, M. Bochenska, Transport of lead
across polymer inclusion membrane with p-tert-butylcalix[4]arene derivatives, Physicochem. Probl. Miner. Process.,
44 (2010) 245–256.
- M. Baczyńska, M. Rzelewska, M. Regel-Rosocka, M. Wiśniewski,
Transport of iron ions from chloride solutions using cellulose
triacetate matrix inclusion membranes with an ionic liquid
carrier, Chem. Pap., 70 (2016) 172–179.
- A. Casadella, O. Schaetzle, K. Nijmeijer, K. Loos, Polymer
Inclusion Membranes (PIM) for the recovery of potassium in
the presence of competitive cations, Polymers, 8 (2016) 76, doi:
10.3390/polym8030076.
- E. Radzyminska-Lenarcik, M. Ulewicz, The use of
1-alkylimidazoles for selective separation of zinc ions in the
transport process across a polymer inclusion membrane,
Physicochem. Probl. Miner. Process., 50 (2014) 131–142.
- D. Wang, J. Hu, D. Liu, Q. Chen, J. Li, Selective transport and
simultaneous separation of Cu(II), Zn(II) and Mg(II) using
a dual polymer inclusion membrane system, J. Membr. Sci.,
52 (2017) 206–213.
- H.I. Turgut, V. Eyupoglu, R.A. Kumbasar, The comprehensive
investigation of the room temperature ionic liquid additives in
PVC based polymer inclusion membrane for Cr(VI) transport,
J. Vinyl Add. Tech., 25 (2019) E107–E119, doi: 10.1002/
vnl.21649.
- T. Zh. Sadyrbaeva, Gold(III) recovery from non-toxic electrolytes
using hybrid electrodialysis–electrolysis process, Sep. Purif.
Technol., 86 (2012) 262–265.
- P.P. Natesh, S. Govindaradjane, S.P. Kumar, Methodological
review on recovery of gold from E-waste in India, J. Chem.
Pharm. Res., 8 (2015) 268–272.
- C.K. Lee, K.-I. Rhee, H.-J. Sohn, Recovery of gold from electronic
scrap by hydrometallurgical process,
J. Korean Inst. Resour.
Recyl., 6 (1997) 36–40.
- A.C. Kasper, H.M. Veit, Gold recovery from printed circuit
boards of mobile phones scraps using a leaching solution
alternative to cyanide, Braz. J. Chem. Eng., 35 (2018) 931–942.
- M.A. Dehchenari, S. Hosseinpoor, R. Aali, N. Salighehdar
Iran, M. Mehdipour, Simple method for extracting gold from
electrical and electronic wastes using hydrometallurgical
process, Environ. Health Eng. Manage.,
4 (2016) 55–58.
- A. Ashiq, J. Kulkarni, M. Vithanage. Chapter 10 –
Hydrometallurgical Recovery of Metals From E-waste, M.N.V.
Prasad, M. Vithanage, Eds., Electronic Waste Management
and Treatment Technology,
Butterworth-Heinemann, 2019,
pp. 225–246, ISBN 9780128161906.
- R. Wang, C. Zhang, Y. Zhao, Y. Zhou, E. Ma, J. Bai, J. Wang,
Recycling gold from printed circuit boards
gold-plated layer of
waste mobile phones in “mild aqua regia” system, J. Cleaner
Prod., 278 (2021) 123597, doi: 10.1016/j.jclepro.2020.123597.
- Y. Wu, Q. Fang, X. Yi, G. Liu, R.-W. Li, Recovery of gold from
hydrometallurgical leaching solution of electronic waste via
spontaneous reduction by polyaniline, Prog. Nat. Sci.: Mater.
Int., 27 (2017) 514–519.
- A. Tuncuk, Lab scale optimization and two-step sequential
bench scale reactor leaching tests for the chemical dissolution
of Cu, Au and Ag from waste electrical and electronic equipment
(WEEE), Waste Manage., 95 (2019) 636–643.
- A.K. Awasthi, J. Li, An overview of the potential of eco-friendly
hybrid strategy for metal recycling from WEEE, Resour.
Conserv. Recycl., 126 (2017) 228–239.
- J. Rydberg, M. Cox, C. Musikas, G.R. Choppin, Principles and
Practices of Solvent Extraction, 2nd ed., Marcel Dekker, New
York, 2004, p. 584.
- A. Matthew Wilson, P.J. Bailey, P.A. Tasker, J.R. Turkington,
R.A. Grant, J.B. Love, Solvent extraction: the coordination
chemistry behind extractive metallurgy, Chem. Soc. Rev.,
43 (2014) 123–134.
- E.D. Doidge, L.M.M. Kinsman, Y. Jo. I. Carson, A.J. Duffy,
I.A. Kordas, E. Shao, P.A. Tasker, B.T. Ngwenya, C.A. Morrison,
J.B. Love, Evaluation of simple amides in the selective
recovery of gold from secondary sources by solvent extraction,
ACS Sustainable Chem. Eng., 7 (2019) 15019–15029.
- E.D. Doidge, I. Carson, P.A. Tasker, R.J. Ellis, C.A. Morrison,
J.B. Love, A simple primary amide for the selective recovery of
gold from secondary resources, J. German Chem. Soc., 55 (2016)
12436–12439.
- T. Oshima, T. Koyama, A.N. Otsuki, A comparative study on
the extraction of Au(III) using cyclopentyl methyl ether, dibutyl
carbitol, and methyl isobutyl ketone in acidic chloride media,
Solvent Extr. Ion Exch., 39 (2021) 477–490.
- A. Alzate, M.E. López, C. Serna, Recovery of gold from waste
electrical and electronic equipment (WEEE) using ammonium
persulfate, Waste Manage., 57 (2016) 113–120.
- K. Campos, T. Vincent, P. Bunio, A. Trochimczuk, E. Guibal,
Gold recovery from HCl solutions using
Cyphos IL-101
(a quaternary phosphonium ionic liquid) immobilized in
biopolymer capsules, Solvent Extr. Ion Exch., 26 (2008) 570–601.
- J.C. Aguilar Cordero, M. Sanchez-Castellanos, E. Rodriguez
de San Miguel, J. de Gyves, Cd(II) and Pb(II) extraction and
transport modeling in SLM and PIM systems using Kelex 100 as
carrier, J. Membr. Sci., 190 (2001) 107–118.
- M. Macias, E.R. de San Miguel, Optimization of Ni(II) facilitated
transport from aqueous solutions using a polymer inclusion
membrane, Water Air Soil Pollut., 232 (2021), doi: 10.1007/s11270-021-04998-4.
- E.R. de San Miguel, A.V. Garduño-García, J.C. Aguilar,
J. de Gyves, Gold(III) transport through polymer inclusion
membranes: efficiency factors and pertraction mechanism
using Kelex 100 as carrier, Ind. Eng. Chem. Res., 46 (2007)
2861–2869.
- E.R. de San Miguel, A.V. Garduno-Garcia, M.E. Nunez-Gaytan,
J.C. Aguilar, J. de Gyves, Application of an organic-inorganic
hybrid membrane for selective gold(III) permeation, J. Membr.
Sci., 307 (2008) 1–9.
- H. Mahandra, R. Singh, B. Gupta, Liquid–liquid extraction
studies on Zn(II) and Cd(II) using phosphonium ionic liquid
(Cyphos IL-104) and recovery of zinc from zinc plating mud,
Sep. Purif. Technol., 177 (2017) 281–292.
- Z. Zhu, K. Tulpatowicz, Y. Pranolo, C.Y. Cheng, Solvent
extraction of molybdenum and vanadium from sulphate
solutions with Cyphos IL-101, Hydrometallurgy, 154 (2015)
72–77.
- A. Kumari, M.K. Sinha, S.K. Sahu, B.D. Pandey, Solvent
extraction and separation of trivalent lanthanides using Cyphos
IL-104, a novel phosphonium ionic liquid as extractant, Solvent
Extr. Ion Exch., 34 (2016) 469–484.
- M.R. Yaftian, M.I.G.S. Almeida, R.W. Cattrall, S.D. Kolev, Selective
extraction of vanadium(V) from sulfate solutions into a polymer
inclusion membrane composed of poly(vinylidenefluoride-co-
hexafluoropropylene) and Cyphos® IL 101, J. Membr. Sci.,
545 (2018) 57–65.
- M. Baczyńska, M. Waszak, M. Nowicki, D. Prządka, S. Borysiak,
M. Regel-Rosocka, Characterization of polymer inclusion
membranes (PIMs) containing phosphonium ionic liquids as
Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070–5082.
- B. Pospiech, Separation of cadmium(II), cobalt(II) and nickel(II)
by transport through polymer inclusion membranes with
phosphonium ionic liquid as ion carrier, Arch. Metall. Mater.,
60 (2015) 2933–2938.
- Y.Y.N. Bonggotgetsakul, R.W. Cattrall, S.D. Kolev, Recovery
of gold from aqua regia digested electronic scrap using a
poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)
based polymer inclusion membrane (PIM) containing Cyphos
IL-104, J. Membr. Sci., 514 (2016) 274–281.
- Y.Y.N. Bonggotgetsakul, R.W. Cattrall, S.D. Kolev, Extraction
of gold(III) from hydrochloric acid solutions with a PVC-based
polymer inclusion membrane (PIM) containing Cyphos® IL
104, Membranes, 5 (2015) 903–914.
- F. Kubota, R. Kono, W. Yoshida, M. Sharaf, S.D. Kolev, M. Goto,
Recovery of gold ions from discarded mobile phone leachate
by solvent extraction and polymer inclusion membrane (PIM)
based separation using an amic acid extractant, Sep. Sci.
Technol., 214 (2019) 156–161.
- L.F. Campo-Cobo, M.L. Perez-Urbano, T.M. Gutierrez-Valencia, O.L. Hoyos-Saavedra, G. Cuervo-Ochoa, Selective
extraction of gold with polymeric inclusion membranes
based on salen ligands with electron-accepting substituents,
J. Inorg. Organomet. Polym., 31 (2021) 1–11, doi: 10.1007/s10904-021-01924-3.
- M.N. Ştefănuţ, Z. Űrmösi, A. Căta, P. Sfîrloagă, C. Tănasie,
Studies for gold and silver recovery from waste electronic
equipment, Rev. Roum. Chim., 58 (2013) 673–678.
- S. Laki, A. Arabi Shamsabadi, F. Seidi, M. Soroush, Sustainable
recovery of silver from deactivated catalysts using a novel
process combining leaching and emulsion liquid membrane
techniques, Ind. Eng. Chem. Res., 57 (2018) 13821–13832.
- K. Shimojo, M. Goto, Solvent extraction and stripping of silver
ions in room-temperature ionic liquids containing calixarenes,
Anal. Chem., 76 (2004) 5039–5044.
- A. Nowik-Zajac, I. Zawierucha, C. Kozlowski, Selective removal
of silver(I) using polymer inclusion membranes containing
calixpyrroles, RSC Adv., 9 (2019) 31122–31132.
- A. Nowik-Zajac, I. Zawierucha, C. Kozlowski, Selective transport
of Ag(I) through a polymer inclusion membrane containing
a calix[4]pyrrole derivative from nitrate aqueous solutions,
Int. J. Mol. Sci., 21 (2020) 5348, doi: 10.3390/ijms21155348.
- E. Radzyminska-Lenarcik, M. Ulewicz, I. Pyszka, Application
of polymer inclusion membranes doped with alkylimidazole
to separation of silver and zinc ions from model solutions and
after battery leaching, Materials, 13 (2020) 3103, doi: 10.3390/ma13143103.
- T. Wongsawa, N. Traiwongsa, U. Pancharoen, K. Nootong,
A review of the recovery of precious metals using ionic liquid
extractants in hydrometallurgical processes, Hydrometalurgy,
198 (2020) 105488, doi:10.1016/j.hydromet.2020.105488.
- A. Cieszyńska, M. Wiśniewski, Extraction of palladium(II) from
chloride solutions with Cyphos®IL 101/toluene mixtures as
novel extractant, Sep. Purif. Technol., 73 (2010) 202–207.
- A. Cieszńska, M. Wiśniewski, Extractive recovery of
palladium(II) from hydrochloric acid solutions with Cyphos®IL
104, Hydrometallurgy, 113–114 (2012) 79–85.
- M. Regel-Rosocka, M. Rzelewska, M. Baczyńska, M. Janus,
M. Wiśniewski, Removal of palladium(II) from aqueous
chloride solutions with Cyphos phosphonium ionic liquids as
metal ion carriers for liquid–liquid extraction and transport
across polymer inclusion membranes, Physicochem. Probl.
Miner. Process., 51 (2015) 621–631.
- A.T.N. Fajar, F. Kubota, M.L. Firmansyah, M. Goto, Separation
of palladium(II) and rhodium(III) using a polymer inclusion
membrane containing a phosphonium-based ionic liquid
carrier, Ind. Eng. Chem. Res., 58 (2019) 22334–22342.
- B. Pośpiech, Highly efficient facilitated membrane transport of
palladium(II) ions from hydrochloric acid solutions through
plasticizer membranes with Cyanex 471X, Physicochem. Probl.
Miner. Process., 51 (2015) 281–291.
- M. Shao, S. Li, C. Jin, M. Chen, Z. Huang, Recovery of Pd(II)
from hydrochloric acid medium by solvent extraction–
direct electrodeposition using hydrophilic/hydrophobic ILs,
ACS Omega, 5 (2020) 27188–27196.
- D. Bourgeois, V. Lacanau, R. Mastretta, C. Contino-Pepin,
D. Meyer, A simple process for the recovery of palladium from
wastes of printed circuit boards, Hydrometallurgy, 191 (2020)
105241, doi: 10.1016/j.hydromet.2019.105241.
- R. Jha, M.D. Rao, A. Meshram, H.R. Verma, K.K. Singh,
Potential of polymer inclusion membrane process for selective
recovery of metal values from waste printed circuit boards:
a review, J. Cleaner Prod., 265 (2020) 121621, doi: 10.1016/j.
jclepro.2020.121621.
- R.G. Charles, P. Douglas, I.L. Hallin, I. Matthews, G. Liversage,
An investigation of trends in precious metal and copper content
of RAM modules in WEEE: implications for long term recycling
potential, Waste Manage., 60 (2017) 505–520.