References

  1. A.A. Oyekanmi, A.A.A. Latiff, Z. Daud, R.M.S. Radin Mohamed, N.A.A. Aziz, N. Ismail, M. Rafatullah, A. Ahmad,
    K. Hossain, Adsorption of pollutants from palm oil mill effluent using natural adsorbents: optimization and isotherm studies, Desal. Water Treat., 169 (2019) 181–90.
  2. A.R.O. Adeleke, A.A.A. Latiff, Z. Daud, N.F.M. Daud, M.K. Aliyu, Heavy metal removal from wastewater of palm oil mill using developed activated carbon from coconut shell and cow bones, Key Eng. Mater., 737 (2017) 428–432.
  3. A.A. Oyekanmi, A.A.A. Latiff, Z. Daud, N.F.M. Daud, P. Gani, Adsorption of heavy metal from palm oil mill effluent on the mixed media used for the preparation of composite adsorbent, IOP Conf. Ser.: Mater. Sci. Eng., 103 (2017) 06020, doi: 10.1051/ matecconf/201710306020.
  4. D. Rana, T. Matsuura, Membrane Transport Models, In: Encyclopedia of Agriculture, Food, and Biological Engineering, Vol. 2, CRC Press, Boca Raton, Florida USA, 2010, pp. 1041–1047.
  5. D. Rana, T. Matsuura, S. Sourirajan, Physicochemical and Engineering Properties of Food in Membrane Separation Processes, In: Engineering Properties of Foods, Taylor & Francis, Boca Raton, CRC Press, Florida, USA, 2014, pp. 1041–1047.
  6. D. Rana, T. Matsuura, State of the art reviews in membrane science and research, J. Membr. Sci., 3 (2017) 118–119.
  7. N.D. Trung, N. Tri, P.H. Phuong, H.C. Anh, Synthesis of highly active heterostructured Al2TiO5/TiO2 photocatalyst in a neutral medium, J. Nanomater., 2020 (2020) 1–12, doi: 10.1155/2020/6684791.
  8. Y.-H. Park, T. Hinoki, A. Kohyama, Development of multifunctional NITE-porous SiC for ceramic insulators, J. Nucl. Mater., 386–388 (2009) 1014–1017.
  9. L. Xu, X. Xi, W. Zhu, A. Shui, W.B. Dai, Investigation on the influence factors for preparing
    mullite-whisker-structured porous ceramic, J. Alloys Compd., 649 (2015) 739–745.
  10. Y.-H. Park, J.-S. Park, T. Hinoki, A. Kohyama, Development of manufacturing method for NITE-porous SiC ceramics using decarburization process, J. Eur. Ceram. Soc., 28 (2008) 657–661.
  11. W. Qin, B. Lei, C. Peng, J. Wu, Corrosion resistance of ultrahigh purity porous alumina ceramic support, Mater. Lett., 144 (2015) 74–77.
  12. B. Hofs, J. Ogier, D. Vries. E.F. Beerendonk, E.R. Cornelissen, Comparison of ceramic and polymeric membrane permeability and fouling using surface water, Sep. Purif. Technol., 79 (2011) 365–374.
  13. H.T. Vo, J. Kim, N.Y. Lim, J.K. Lee, J.B. Joo, Effect of pore texture property of mesoporous alumina on adsorption performance of ammonia gas, J. Ind. Eng. Chem., 91 (2020) 129–138.
  14. A.A. Oyekanmi, A.A.A. Latiff, Z. Daud, R.M.S. Radin Mohamed, I. Norli, A.A. Aziz, M. Rafatullah, A. Akil, K. Hossain, A.K. Abiodun, Adsorption of cadmium and lead from palm oil mill effluent using bone-composite: optimisation and isotherm studies, Int. J. Environ. Anal. Chem., 99 (2019) 707–725.
  15. A.O. Adeleke, A.A. Latiff, Z. Daud, N.F.M. Daud, B. Ridzuan, Remediation of raw wastewater of palm oil mill using activated cow bone powder through batch adsorption, Key Eng. Mater., 705 (2016) 380–384.
  16. J. Kim, H. Lee, H.T. Vo, G. Lee, G.N. Kim, S. Jang, J.B. Joo, Beadshaped mesoporous alumina adsorbents for adsorption of ammonia, Materials, 13 (2020) 1–13, doi: 10.3390/ma13061375.
  17. H. Khan, K. Gul, B. Ara, A. Khan, N. Ali, N. Ali, M. Bilal, Adsorptive removal of acrylic acid from the aqueous environment using raw and chemically modified alumina: batch adsorption, kinetic, equilibrium and thermodynamic studies, J. Environ. Chem. Eng., 8 (2020) 1–11, doi: 10.1016/j. jece.2020.103927.
  18. S. Suganuma, K. Arita, F. Nakano, E. Tsuji, N. Katada, Adsorption kinetics in removal of basic
    nitrogen-containing compounds from practical heavy oils by amorphous silicaalumina, Fuel, 266 (2020) 1–8, doi: 10.1016/j.fuel.2020. 117055.
  19. M.A. Rosli, Z. Daud, A.A.A. Latiff, S.E. Rahman, A.A. Oyekanmi, H. Awang, A. Zainorabidin, A.A. Halim, The effectiveness of peat-AC composite adsorbent in removing SS, colour and Fe from landfill leachate, Int. J. Integr. Eng., 9 (2017) 1–4.
  20. A. Shaga, P. Shen, L.-G. Xiao, R.-F. Guo, Y.-B. Liu, Q.-C. Jiang, High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure, Mater. Sci. Eng., A, 708 (2017) 199–207.
  21. Y. Sun, Z. Yang, D. Cai, Q. Li, H. Li, S. Wang, D. Jia, Y. Zhuo, Mechanical, dielectric and thermal properties of porous boron nitride/silicon oxynitride ceramic composites prepared by pressureless sintering, Ceram. Int., 43( 2017) 8230–8235.
  22. M.S. Rayat, S.S. Gill, R. Singh, L. Sharma, Fabrication and machining of ceramic composites — a review on current scenario, Mater. Manuf. Processes, 32 (2017) 1451–1474.
  23. A. Sommers, Q. Wang, X. Han, C. T’Joen, Y. Park, A. Jacobi, Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—a review, Appl. Therm. Eng., 30 (2010) 1277–1291.
  24. R. Smyth, The Use of High Temperature Heat Exchangers to Increase Power Plant Thermal Efficiency,
    IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference
    (Cat. No.97CH6203), IEEE, Honolulu, HI, USA, 1997.
  25. Z. He, Z. Lyu, Q. Gu, L. Zhang, J. Wang, Ceramic-based membranes for water and wastewater treatment, Colloids Surf., A, 578 (2019) 1–19, doi: 10.1016/j.colsurfa.2019.05.074.
  26. E.C. Hammel, O.L.-R. Ighodaro, O.I. Okoli, Processing and properties of advanced porous ceramics: an application based review, Ceram. Int., 40 (2014) 15351–15370.
  27. J.H. Huang, X.Q. Cheng, Q. Bai, Y.J. Zhang, K. Wang, J. Ma, L. Shao, Ultrafast poly(sodium methacrylate)-grafted UiO-66-incorporated nanocomposite membranes enable excellent active pharmaceutical ingredient concentration, Ind. Eng. Chem. Res., 60 (2021) 6287–6297.
  28. Y. Zhang, J. Guo, G. Han, Y. Bai, Q. Ge, J. Ma, L. Shao, Molecularly soldered covalent organic frameworks for ultrafast precision sieving, Sci. Adv., 7 (2021) 8706, doi: 10.1126/sciadv. abe8706.
  29. L. Shen, L. Tian, J. Zuo, X. Zhang, S. Sun, Y. Wang, Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination, Adv. Compos. Mater., 2 (2019) 51–69.
  30. H. Hu, F. Ding, H. Ding, J. Liu, M. Xiao, Y. Meng, L. Sun, Sulfonated poly(fluorenyl ether ketone)/sulfonated α-zirconium phosphate nanocomposite membranes for proton exchange membrane fuel cells, Adv. Compos. Mater., 3 (2020) 498–507.
  31. T.T. Dele-Afolabi, M.A. Azmah Hanim, M. Norkhairunnisa, S. Sobri, R. Calin, Investigating the effect of porosity level and pore former type on the mechanical and corrosion resistance properties of agro-waste shaped porous alumina ceramics, Ceram. Int., 43 (2017) 8743–8754.
  32. H. Fang, J.F. Gao, H.T. Wang, C.S. Chen, Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process, J. Membr. Sci., 403 (2012) 41–46.
  33. T.T. Dele-Afolabi, M.A. Azmah Hanim, M. Norkhairunnisa, S. Sobri, R. Calin, Z.N. Ismarrubie, Significant effect of rice husk and sugarcane bagasse pore formers on the microstructure and mechanical properties of porous Al2O3/Ni composites, J. Alloys Compd., 743 (2018) 323–331.
  34. Y. Wang, X. Wang, C. Liu, X. Su, C. Yu, Y. Su, L. Qiao, Y. Bai, Aluminum titanate based composite porous ceramics with both high porosity and mechanical strength prepared by a special two-step sintering method, J. Alloys Compd., 853 (2021) 1–9, doi: 10.1016/j.jallcom.2020.157193.
  35. R.M. Khattab, M.A. Hessien, N.I. Abd El Ghaffar, S.H. Abd El Rahim, H.E.H. Sadek, Porous alumina-felsite ceramic composites prepared by direct coagulation casting method: felsite rock (central-eastern desert, Egypt), Ceram. Int., 46 (2020) 28308–28315.
  36. Y.H. Cho, S. Jeong, S.-J. Kim, Y. Kim, H.J. Lee, T.H. Lee, H.B. Park, H. Park, S.-E. Nam, Y.-I. Park, Sacrificial graphene oxide interlayer for highly permeable ceramic thin film composite membranes, J. Membr. Sci., 618 (2021) 1–10, doi: 10.1016/j.memsci.2020.118442.
  37. D. Li, Q. Yu, J. Li, L. Zeng, S. Gao, Manufacture of Si3N4-SiCN composite bulks with hierarchical pore structure, J. Eur. Ceram. Soc., 41 (2021) 284–289.
  38. C.M. Guzzo, J.A. Nychka, Bone ‘spackling’ paste: mechanical properties and in vitro response of a porous ceramic composite bone tissue scaffold, J. Mech. Behav. Biomed. Mater., 112 (2020) 103958, doi:10.1016/j.jmbbm.2020.103958.
  39. Y. Wu, Z. Yang, N. Wu, S. Zhao, J. Li, Y. Li, Design of threedimensional interconnected porous hydroxyapatite ceramicbased composite phase change materials for thermal energy storage, Int. J. Energy Res., 44 (2020) 11930–11940.
  40. H. Shao, X. Yu, Z. Zhang, T. Lin, J. Peng, A. Wang, S. Liu, M. Zhao, Effect of different CaSO4 contents on
    CaSiO3‐CaSO4 porous composite bone scaffolds by 3D gel‐printing, Int. J. Appl. Ceram. Technol., 17 (2020) 2762–2767.
  41. M. Biernat, L. Ciołek, M. Dzierżyńska, A. Oziębło, J. Sawicka, M. Deptuła, M. Bauer, W. Kamysz, M. Pikuła,
    Z. Jaegermann, S. Rodziewicz-Motowidło, Porous chitosan/ZnO-doped bioglass composites as carriers of bioactive peptides, Int. J. Appl. Ceram. Technol., 17 (2020) 2807–2816.
  42. H. Shao, X. Yu, Z. Zhang, T. Lin, J. Peng, A. Wang, S. Liu, M. Zhao, Effect of different CaSO4 contents on
    CaSiO3-CaSO4 porous composite bone scaffolds by 3D gel-printing, Int. J. Appl. Ceram. Technol., 17 (2020) 2762–2767.
  43. ASTM. Standard, A, E112–13, Standard Test Methods for Determining Average Grain Size, 2013.
  44. M.L. Sandoval, M.H. Talou, A.G. Tomba Martinez, M.A. Camerucci, Mechanical testing of cordierite porous ceramics using high temperature diametral compression, J. Mater. Sci., 45 (2010) 5109–5117.
  45. ASTM. Standard, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, West Conshohocken, PA.: ASTM C20–00, 2015.
  46. S.G. Cook, J.A. Little, J.E. King, Etching and microstructure of engineering ceramics, Mater. Charact., 34 (1995) 1–8.
  47. T.T. Dele-Afolabi, M.A.A. Hanim, M. Norkhairunnisa, S. Sobri, R. Calin, O.J. Ojo-Kupoluyi, Fabrication Methods and Characterization Techniques for Porous Ceramic Materials, In: Reference Module in Materials Science and Materials Engineering, Elsevier Encyclopaedia, United Kingdom, 2019.
  48. R. Barkallah, R. Taktak, N. Guermazi, F. Zaïri, J. Bouaziz, F. Zaïri, Manufacturing and mechanical characterization of Al2O3/β-TCP/TiO2 biocomposite as a potential bone substitute, Int. J. Adv. Manuf. Syst., 95 (2018) 3369–3380.
  49. J.B. Zhu, T. Zhou, Z.Y. Liao, L. Sun, X.B. Li, R. Chen, Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography, Int. J. Rock Mech. Min. Sci., 106 (2018) 198–212.
  50. I. Deniz Akin, W. Likos, Brazilian tensile strength testing of compacted clay, Geotech. Test. J., 40 (2017) 608–617.
  51. C. ASTM, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, West Conshohocken, PA, 2011.
  52. R.C. Hibbeler, Statics and Mechanics of Materials, Pearson Higher Ed., Hibbeler Pearson Prentice Hall, Saddle River, NJ, 2013.
  53. J.L. Amorós, V. Cantavella, J.C. Jarque, C. Felíu, Green strength testing of pressed compacts: an analysis of the different methods, J. Eur. Ceram. Soc., 28 (2008) 701–710.
  54. T.V. Vineeth Kumar, M.D. Prashanth, Evaluation of the strength of cast iron using diametral compression test, Mater. Today:. Proc., 4 (2017) 9956–9960.
  55. M.L. Sandoval, M.H. Talou, A.G.T. Martinez, M.A. Camerucci, E. Gregorová, W. Pabst, Porous cordierite-based ceramics processed by starch consolidation casting – microstructure and high-temperature mechanical behavior, Ceram. Int., 44 (2018) 3893–3903.
  56. M.L. Sandoval, M.H. Talou, A.G.T. Martinez, M.A. Camerucci, E. Gregorová, W. Pabst, High-temperature mechanical behavior of cordierite-based porous ceramics prepared by modified cassava starch thermogelation, J. Mater. Sci., 47 (2012) 8013–8021.
  57. M. Fahad, Stresses and failure in the diametral compression test, J. Mater. Sci., 31 (1996) 3723–3729.
  58. M.L. Sandoval, M.A. Pucheu, M.H. Talou, A.G. Tomba Martinez, M.A. Camerucci, Mechanical evaluation of cordierite precursor green bodies obtained by starch thermogelling, J. Eur. Ceram. Soc., 29 (2009) 3307–3317.
  59. D. Buncianu, N. Tessier-Doyen, J. Absi, R. Negru, D.-A. Şerban, L. Marşavina, Multi-scale mechanical behaviour of a highly porous alumina based foam, Met. Mater. Int., 26 (2020) 1524–1532.
  60. G. Zhang, L. Ma, B. Wang, L. Wu, Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores, Composites, Part B, 43 (2012) 471–476.
  61. J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J. Wagoner Johnson, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multiscale porosity, Biomaterials., 28 (2007) 45–54.
  62. C.Q. Dam, R. Brezny, D.J. Green, Compressive behavior and deformation-mode map of an open cell alumina, J. Mater. Res., 5 (1990) 163–171.
  63. ASTM, I., Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, ASTM Standards, West Conshohocken, 2015.
  64. P. Ramavath, P. Biswas, N. Ravi, R. Johnson, E. Harkin-Jones, Prediction and validation of buckling stress (σcrt) of the ceramic honeycomb cell walls under quasi-static compression, Cogent Eng., 3 (2016) 1–8, doi:10.1080/23311916.2016.1168068.
  65. G.D. Quinn, Weibull strength scaling for standardized rectangular flexure specimens, J. Am. Ceram. Soc., 86 (2003) 508–510.
  66. G.D. Quinn, B.T. Sparenberg, P. Koshy, L.K. Ives, S. Jahanmir, D.D. Arola, Flexural strength of ceramic and glass rods, J. Test. Eval., 37 (2009) 222–244.
  67. T.T. Dele-Afolabi, M.A. Azmah Hanim, M. Norkhairunnisa, S. Sobri, R. Calin, Z.N. Ismarrubie, Tensile strength and corrosion resistance properties of porous Al2O3/Ni composites prepared with rice husk pore-forming agent, Ceram. Int., 44 (2018) 11127–11135.
  68. O. Abdulrahman Adeleke, A.A.A. Latiff, M.R. Saphira, Z. Daud, I. Norli, A. Ahsan, N. Adila Ab Aziz, A. Al-Gheethi, V. Kumar, A. Fadilat, N. Apandi, Principles and Mechanism of Adsorption for the Effective Treatment of Palm Oil Mill Effluent for Water Reuse, A. Ahsan, A. Fauzi Ismail, Eds., Nanotechnology in Water and Wastewater Treatment, Elsevier, London, 2019, pp. 1–33.
  69. M.A. Rosli, Z. Daud, M.B. Ridzuan, N.A. Abd Aziz, H.B. Awang, A.O. Adeleke, K. Hossain, N. Ismail, Equilibrium isotherm and kinetic study of the adsorption of organic pollutants of leachate by using micro peat-activated carbon composite media, Desal. Water Treat., 160 (2019) 185–192.
  70. Y. Zhao, G. Huang, C. An, J. Huang, X. Xin, X. Chen, Y. Hong, P. Song, Removal of Escherichia coli from water using functionalized porous ceramic disk filter coated with Fe/TiO2 nano-composites, J. Water Process Eng., 33 (2020) 101013, doi: 10.1016/j.jwpe.2019.101013.
  71. T.-F. Lin, J.-K. Wu, Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics, Water Res., 35 (2001) 2049–2057.
  72. S. Mor, K. Ravindra, N.R. Bishnoi, Adsorption of chromium from aqueous solution by activated alumina and activated charcoal, Bioresour. Technol., 98 (2007) 954–957.
  73. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina, J. Colloid Interface Sci., 333 (2009) 14–26.
  74. Y. Ji, L. Li, Y.-T. Wang, Selenium removal by activated alumina in batch and continuous‐flow reactors, Water Environ. Res., 92 (2020) 51–59.
  75. O. AbdulrahmanvAdeleke, A.A.A. Latiff, M.R. Saphira, Z. Daud, I. Norli, A. Ahsan, N Adila Ab Aziz, M. Ndah,
    V. Kumar, A. Al-Gheethi, M Arif Rosli, H. Mahmood, 2 – Locally Derived Activated Carbon From Domestic, Agricultural and Industrial Wastes for the Treatment of Palm Oil Mill Effluent, A. Ahsan, A.F. Ismail, Eds., Nanotechnology in Water and Wastewater Treatment: Theory and Applications Micro and Nano Technologies, Elsevier, London, 2019, pp. 35–62.
  76. R. Mohamed, A. Al-Gheethi, A. Abdulrahman, M.S. Bin Sainudin, S.A. Bakar, A.H.M. Kassim, Optimization of ceramic waste filter for bathroom greywater treatment using central composite design (CCD), J. Environ. Chem. Eng., 6 (2018) 1578–1588.
  77. J.-H. Ha, S.Z.A. Bukhari, J. Lee, I.-H. Song, C. Park, Preparation processes and characterizations of
    alumina-coated alumina support layers and alumina-coated natural material-based support layers for microfiltration, Ceram. Int., 42 (2016) 13796–13804.
  78. K. Gao, R. Cui, Y. Fan, X. Zhou, Y. Zhang, Low-cost pyrophyllitebased microfluidic device for the study of enhanced oil recovery, Micro Nano Lett., 14 (2019) 1349–1354.
  79. R. Ahmad, M. Aslam, E. Park, S. Chang, D. Kwon, J. Kim, Submerged low-cost pyrophyllite ceramic membrane filtration combined with GAC as fluidized particles for industrial wastewater treatment, Chemosphere, 206 (2018) 784–792.
  80. S. Chang, D. Kwon, J. Kim, New Approach with Fluidized Bed Reactor Using Low-Cost Pyrophyllite/Alumina Composite Membrane for Real-Metal Plating Wastewater Treatment, V. Naddeo, M. M. Balakrishnan, K.H. Choo, Eds., Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Springer, Cham, 2020, pp. 177–178.
  81. P. Chen, X. Ma, Z. Zhong, F. Zhang, W. Xing, Y. Fan, Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4, Desalination, 404 (2017) 102–111.
  82. J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment, Environ. Pollut., 158 (2010) 2335–2349.
  83. R. Vinoth Kumar, A.K. Ghoshal, G. Pugazhenthi, Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment, J. Membr. Sci., 490 (2015) 92–102.
  84. X. Chen, T. Qi, Y. Zhang, T. Wang, M. Qiu, Z. Cui, Y. Fan, Facile pore size tuning and characterization of nanoporous ceramic membranes for the purification of polysaccharide, J. Membr. Sci., 597 (2020) 117631, doi: 10.1016/j.memsci. 2019.117631.
  85. L. Zhu, X. Dong, M. Xu, F. Yang, M.D. Guiver, Y. Dong, Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets, J. Membr. Sci., 582 (2019) 140–150.
  86. R. Mouratib, B. Achiou, M. El Krati, S.A. Younssi, S. Tahiri, Low-cost ceramic membrane made from alumina- and silicarich water treatment sludge and its application to wastewater filtration, J. Eur. Ceram. Soc., 40 (2020) 5942–5950.
  87. K. Xia, S. Yu, Y. Li, H. Han, L. Duan, Z. Hou, X. Liu, The surface carboxyl group of carbonaceous microspheres effects on the synthesis and structure of SiOC ceramics, J. Eur. Ceram. Soc., 41 (2021) 2375–2385.
  88. O.A. Fomina, A. Yu. Stolboushkin, Modeling of the transition layer in ceramic matrix composites from coal wastes and clay, Solid State Phenom., 299 (2020) 37–42.
  89. D. Li, B. Tang, X. Lu, W. Chen, X. Dong, J. Wang, X. Wang, Hierarchically carbonized silk/ceramic composites for electrothermal conversion, Composites, Part A, 141 (2021) 106237, doi: 10.1016/j.compositesa.2020.106237.
  90. W. Liu, D. Wang, R.A. Soomro, F. Fu, N. Qiao, Y. Yu, R. Wang, B. Xu, Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination, J. Membr. Sci., 591 (2019) 117323, doi: 10.1016/j. memsci.2019.117323.
  91. L. Liang, J. Fan, M. Wang, G. Chen, G. Sun, Ternary thermoelectric composites of polypyrrole/PEDOT:PSS/carbon nanotube with unique layered structure prepared by one-dimensional polymer nanostructure as template, Compos. Sci. Technol., 187 (2020) 107948, doi:10.1016/j.compscitech.2019.107948.
  92. C. Liu, J. Xia, J. Gu, W. Wang, Q. Liu, L. Yan, T. Chen, Multifunctional CNTs-PAA/MIL101(Fe)@Pt composite membrane for high-throughput oily wastewater remediation, J. Hazard. Mater., 403 (2021) 123547, doi:10.1016/j.jhazmat. 2020.123547.
  93. B. Arora, P. Attri, Carbon nanotubes (CNTs): a potential nanomaterial for water purification, J. Compos. Sci.,
    4 (2020) 135, doi: 10.3390/jcs4030135.
  94. L. Yan, C. Liu, J. Xia, M. Chao, W. Wang, J. Gu, T. Chen, CNTs/TiO2 composite membrane with adaptable wettability for on-demand oil/water separation, J. Cleaner Prod., 275 (2020) 124011, doi:10.1016/j.jclepro.2020.124011.
  95. E. Elnabawy, I.M.A. Elsherbiny, A.M.A. Abdelsamad, B. Anis, A. Hassan, M. Ulbricht, A.S.G. Khalil, Tailored CNTs buckypaper membranes for the removal of humic acid and separation of oil-in-water emulsions, Membranes, 10 (2020) 97, doi: 10.3390/membranes10050097.
  96. N. Chaukura, R. Chiworeso, W. Gwenzi, M.M. Motsa, W. Munzeiwa, W. Moyo, I. Chikurunhe, T.T.I. Nkambule,
    A new generation low-cost biochar-clay composite ‘biscuit’ ceramic filter for point-of-use water treatment, Appl. Clay Sci., 185 (2020) 105409, doi: 10.1016/j.clay.2019.105409.
  97. T. Wu, B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, J. Wang, Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation, RSC Adv., 5 (2015) 7880–7889.
  98. M. Kárászová, M. Bourassi, J. Gaálová, Membrane removal of emerging contaminants from water: which kind of membranes should we use?, Membranes, 10 (2020) 305, doi: 10.3390/membranes10110305.
  99. A. Faivre, F. Despetis, L. Duffours, P. Colombel, Effect of CaO and Al2O3 addition on the properties
    of K2O–Na2O–P2O5 glass system, Int. J. Appl. Glass Sci., 10 (2019) 162–171.
  100. K.S.D. Premarathna, A.U. Rajapaksha, N. Adassoriya, B. Sarkar, N.M.S. Sirimuthu, A. Cooray, Y.S. Ok, M. Vithanage, Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media,
    J Environ Manage., 218 (2019) 315–322.
  101. G.-T. Lim, H.-G. Jeong, I.-S. Hwang, D.-H. Kim, N. Park, J. Cho, Fabrication of a silica ceramic membrane using the aerosol flame deposition method for pretreatment focusing on particle control during desalination, Desalination, 238 (2009) 53–59.
  102. J. Yang, X. Xing, Y. Zhao, R. Mu, Y. Guo, H. Hou, Microstructures of nickel-doped methylated silica membrane materials calcined in air: influence of Ni content, Ferroelectrics, 562 (2020) 85–95.
  103. M. Panchal, G. Raghavendra, M. Omprakash, S. Ojha, Fabrication and characterization of silica based ceramic composite for filtration applications, Silicon, 13 (2021) 1951–1960.
  104. F. Ali, S.B. Khan, N. Shaheen, Y.Z. Zhu, Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates, Carbohydr. Polym., 259 (2021) 117681, doi:10.1016/j.carbpol.2021. 117681.
  105. W. Puthai, M. Kanezashi, H. Nagasawa, T. Tsuru, T. Puthai, Nanofiltration performance of SiO2-ZrO2 membranes in aqueous solutions at high temperatures, Sep. Purif. Technol., 168 (2016) 238–247.
  106. J. Zhang, T. Liu, Q. Huang, Z. Luo, A. Lu, L. Zhu, Preparation, properties characterization and structure formation mechanism of silica sand tailings-based ceramic materials, Mater. Chem. Phys., 255 (2020) 123611, doi: 10.1016/j. matchemphys.2020.123611.
  107. Z. Wang, X. Lyu, G. Yao, P. Wu, J. Wang, J. Wei, Preparation of Ca–Si–Al–Mg porous ceramics by Co-operation of Ca and Mg-contained soda residue and altered rock gold tailings, J. Cleaner Prod., 262 (2020) 121345, doi:10.1016/j.jclepro.2020.121345.
  108. S.S. Alias, Z. Harun, N. Manoh, M.R. Jamalludin, Effects of temperature on rice husk silica ash additive for fouling mitigation by polysulfone–RHS ash mixed-matrix composite membranes, Polym. Bull., 77 (2020) 4043–4075.
  109. E.P. Ferreira-Neto, S. Ullah, M.B. Simões, A.P. Perissinotto, F.S. de Vicente, P.-L.M. Noeske, S.J.L. Ribeiro, U.P. Rodrigues-Filho, Solvent-controlled deposition of titania on silica spheres for the preparation of SiO2@TiO2 core@shell nanoparticles with enhanced photocatalytic activity, Colloids Surf., A, 570 (2019) 293–305.
  110. A. Oun, N. Tahri, S. Mahouche-Chergui, B. Carbonnier, S. Majumdar, S. Sarkar, G.C. Sahoo, R. Ben Amar, Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: elaboration, characterization and application to dye removal, Sep. Purif. Technol., 188 (2017) 126–133.
  111. M. Shokouhfar, S.R. Allahkaram, Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles, Surf. Coat. Technol., 291 (2016) 396–405.
  112. X. Zhang, L. Xu, S. Du, W. Han, J. Han, Preoxidation and crack-healing behavior of ZrB2–SiC ceramic composite, J. Am. Ceram. Soc., 91 (2008) 4068–4073.
  113. F. Mohsenifar, H. Ebrahimifar, Effect of titanium oxide ceramic particles concentration on microstructure and corrosion behaviour of Ni–P–Al2O3–TiO2 composite coating, Bull. Mater. Sci., 43 (2020) 99, doi:10.1007/s12034-020-2068-x.
  114. H. Sun, Y. Wu, Y. Jin, Y. Lv, G. Ju, L. Chen, Y. Hu, Photocatalytic titanium dioxide immobilized on an ultraviolet emitting ceramic substrate for water purification, Mater. Lett., 240 (2019) 100–102.
  115. V.G. Deshmane, Y.G. Adewuyi, Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): effects of different process parameters, Microporous Mesoporous Mater., 148 (2012) 88–100.
  116. K. Li, K.J. Chen, J. Peng, S. Koppala, M. Omran, G. Chen, Onestep preparation of CaO-doped partially stabilized zirconia from fused zirconia, Ceram. Int., 46 (2020) 6484–6490.
  117. A. Fakeeha, A.A. Ibrahim, H. Aljuraywi, Y. Alqahtani, A. Alkhodair, S. Alswaidan, A.E. Abasaeed, S.O. Kasim,
    S. Mahmud, A.S. Al-Fatesh, Hydrogen production by partial oxidation reforming of methane over Ni catalysts supported on high and low surface area alumina and zirconia, Processes, 8 (2020) 499, doi:10.3390/pr8050499.
  118. M. Boussemghoune, M. Chikhi, F. Balaska, Y. Ozay, N. Dizge, B. Kebabi, Preparation of a zirconia-based ceramic membrane and its application for drinking water treatment, Symmetry, 12 (2020) 933, doi:10.3390/sym12060933.
  119. C. Belviso, State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues, Prog. Energy Combust. Sci., 65 (2018) 109–135.
  120. A.K. Basumatary, R.V. Kumar, A.K. Ghoshal, G. Pugazhenthi, Cross flow ultrafiltration of Cr(VI) using MCM-41, MCM-48 and faujasite (FAU) zeolite-ceramic composite membranes, Chemosphere, 153 (2016) 436–446.
  121. J. Zheng, Q. Zeng, Y. Zhang, Y. Wang, J. Ma, X. Zhang, W. Sun, R. Li, Hierarchical porous zeolite composite with a core−shell structure fabricated using β-zeolite crystals as nutrients as well as cores, Chem. Mater., 22 (2010) 6065–6074.
  122. J. Yu, C. Qi, J. Zhang, C. Bao, H. Xu, Synthesis of a zeolite membrane as a protective layer on a metallic Pd composite membrane for hydrogen purification, J. Mater. Chem., 9 (2015) 5000–5006.
  123. H. Ma, Z. Zhu, P. Tang, T. Su, P. Wu, H. Lü, Hierarchical Ti-Beta zeolites with uniform intracrystalline mesopores hydrothermally synthesized via interzeolite transformation for oxidative desulfurization, Microporous Mesoporous Mater., 311 (2021) 110702, doi: 10.1016/j.micromeso.2020.110702.
  124. Q. Jiang, J. Zhou, Y. Miao, S. Yang, M. Zhou, Z. Zhong, W. Xing, Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oilin- water separation, J. Membr. Sci., 610 (2020) 118238, doi: 10.1016/j.memsci.2020.118238.
  125. O.T. Opafola, A.O. David, F.O. Ajibade, H.O. Adeyemi, O.I. Solana, B.D. Odugbose, The utilization of bentonite enhanced termite mound soil mixture as filter for the treatment of paint industrial effluent, SN Appl. Sci., 3 (2021) 415, doi: 10.1007/s42452-021-04405-x.
  126. P.-K. Shih, W.-L. Chang, The effect of water purification by oyster shell contact bed, Ecol. Eng., 77 (2015) 382–390.
  127. S. Tong, J.L. Stocks, L.C. Rodriguez-Gonzalez, C. Feng, S.J. Ergas, Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification (PPAD) process, Bioresour. Technol., 244 (2017) 296–303.
  128. H.Y. Yen, J.H. Chou, Water purification by oyster shell biomedium in a recirculating aquaponic system. Ecol. Eng., 95 (2016) 229–236.
  129. J.N.G. Deutou, Van Essa L.S. Kamga, R.C. Kaze, E. Kamseu, V.M. Sglavo, Thermal behaviour and phases evolution during the sintering of porous inorganic membranes, J. Eur. Ceram. Soc., 40 (2020) 2151–2162.
  130. J.-H. Ha, S.Z.A. Bukhari, J. Lee, I.-H. Song, C. Park, Preparation processes and characterizations of alumina-coated alumina support layers and alumina-coated natural material-based support layers for microfiltration, Ceram. Int., 42 (2016) 13796–13804.
  131. F. Lin, S. Zhang, G. Ma, L. Qiu, H. Sun, Application of ceramic membrane in water and wastewater treatment, E3S Web Conf., 53 (2018) 04032, doi: 10.1051/e3sconf/20185304032.
  132. S. Roy, S. Majumdar, G.C. Sahoo, S. Bhowmick, A.K. Kundu, P. Mondal, Removal of As(V), Cr(VI) and Cu(II) using novel amine functionalized composite nanofiltration membranes fabricated on ceramic tubular substrate, J. Hazard. Mater., 399 (2020) 122841, doi: 10.1016/j.jhazmat.2020.122841.