References
- J.W. Frankenfeld, K.U. Ingold, Alkylamine Substituted
Benzotriazole Containing Lubricants Having Improved
Oxidation Stability and Rust Inhibition (PNE-530), Google
Patents, US5076946, 1991.
- Z. Gan, H. Sun, R. Wang, H. Hu, P. Zhang, X. Ren, Transformation
of acesulfame in water under natural sunlight: joint effect of
photolysis and biodegradation, Water Res., 64 (2014) 113–122.
- S. Weiss, J. Jakobs, T. Reemtsma, Discharge of three
benzotriazole corrosion inhibitors with municipal wastewater
and improvements by membrane bioreactor treatment and
ozonation, Environ. Sci. Technol.,
40 (2006) 7193–7199.
- M. Alotaibi, A. McKinley, B. Patterson, A. Reeder, Benzotriazoles
in the aquatic environment: a review of their occurrence,
toxicity, degradation and analysis, Water Air Soil Pollut.,
226 (2015) 226,
doi: 10.1007/s11270-015-2469-4.
- M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Removal
of benzotriazole by photo-Fenton like process using nano zerovalent
iron: response surface methodology with a Box–Behnken
design, Polish J. Chem. Technol., 19 (2017) 104–112.
- H. Rahmani, A. Rahmani, M. Yousefi, K. Rahmani, Degradation
of sulfamethoxazole antibacterial by
sono-Fenton process using
nano-zero valent iron: influence factors, kinetic and toxicity
bioassay, Desal. Water Treat., 150 (2019) 220–227.
- S. Nachiappan, K. Muthukumar, Intensification of textile
effluent chemical oxygen demand reduction by innovative
hybrid methods, Chem. Eng. J., 163 (2010) 344–354.
- A. Yazdanbakhsh, A. Rahmani, M. Massoudinejad, M. Jafari,
M. Dashtdar, Accelerating the solar disinfection process of
water using modified compound parabolic concentrators
(CPCs) mirror, Desal. Water Treat., 57 (2016) 23719–23727.
- M.-R. Zare, M.-M. Amin, M. Nikaeen, M. Zare, B. Bina,
A. Fatehizadeh, A. Rahmani, M. Ghasemian, Simplification and
sensitivity study of Alamar Blue bioassay for toxicity assessment
in liquid media, Desal. Water Treat., 57 (2016) 10934–10940.
- N. O’Rourke, L. Hatcher, Factor Analysis and Structural
Equation Modeling, SAS Institute, Cary, 2013.
- M. Fazlzadeh, A. Rahmani, H.R. Nasehinia, H. Rahmani,
K. Rahmani, Degradation of sulfathiazole antibiotics in
aqueous solutions by using zero valent iron nanoparticles
and hydrogen peroxide, Koomesh J. Semnan Univ. Med. Sci.,
18 (2016) 350–356.
- J. Bandara, J.A. Mielczarski, J. Kiwi, 2. Photosensitized
degradation of azo dyes on Fe, Ti, and Al oxides. Mechanism
of charge transfer during the degradation, Langmuir, 15 (1999)
7680–7687.
- M. Farzadkia, K. Rahmani, M. Gholami, A. Esrafili, A. Rahmani,
H. Rahmani, Investigation of photocatalytic degradation of
clindamycin antibiotic by using nano-ZnO catalysts, Korean
J. Chem. Eng., 31 (2014) 2014–2019.
- M. Gholami, K. Rahmani, A. Rahmani, H. Rahmani, A. Esrafili,
Oxidative degradation of clindamycin in aqueous solution
using nanoscale zero-valent iron/H2O2/US, Desal. Water Treat.,
57 (2016) 13878–13886.
- K. Sivagami, R.R. Krishna, T. Swaminathan, Photocatalytic
degradation of pesticides in immobilized bead photoreactor
under solar irradiation, Sol. Energy, 103 (2014) 488–493.
- K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling
of bacteria on TiO2 thin film, J. Photochem. Photobiol., A, 156
(2003) 227–233.
- A.V. Emeline, V.N. Kuznetsov, V.K. Rybchuk, N. Serpone,
Visible-light-active titania photocatalysts: the case of N-doped
TiO2s—properties and some fundamental issues, Int. J.
Photoenergy, 2008 (2008) 258394, doi:10.1155/2008/258394.
- S. Sato, R. Nakamura, S. Abe, Visible-light sensitization of
TiO2 photocatalysts by Et-method N doping, Appl. Catal., A,
284 (2005) 131–137.
- Y.Y. Gurkan, N. Turkten, A. Hatipoglu, Z. Cinar, Photocatalytic
degradation of cefazolin over N-doped TiO2 under UV and
sunlight irradiation: prediction of the reaction paths via
conceptual DFT, Chem. Eng. J., 184 (2012) 113–124.
- E. Felis, A. Sochacki, S. Magiera, Degradation of benzotriazole
and benzothiazole in treatment wetlands and by artificial
sunlight, Water Res., 104 (2016) 441–448.
- R. Andreozzi, V. Caprio, A. Insola, G. Longo, Photochemical
degradation of benzotriazole in aqueous solution,
J. Chem.
Technol. Biotechnol., 73 (1998) 93–98.
- F.J. Benitez, J.L. Acero, F.J. Real, G. Roldan, E. Rodriguez,
Photolysis of model emerging contaminants in
ultra-pure water:
kinetics, by-products formation and degradation pathways,
Water Res., 47 (2013) 870–880.
- S. Bahnmüller, C.H. Loi, K.L. Linge, U. von Gunten, S. Canonica,
Degradation rates of benzotriazoles and benzothiazoles under
UV-C irradiation and the advanced oxidation process UV/H2O2,
Water Res., 74 (2015) 143–154.
- L.J. Hem, T. Hartnik, R. Roseth, G.D. Breedveld, Photochemical
degradation of benzotriazole, J. Environ. Sci. Health., Part A,
38 (2003) 471–481.
- V. Matamoros, Y. Rodríguez, J. Albaigés, A comparative
assessment of intensive and extensive wastewater treatment
technologies for removing emerging contaminants in small
communities, Water Res., 88 (2016) 777–785.
- V. Matamoros, E. Jover, J.M. Bayona, Occurrence and fate of
benzothiazoles and benzotriazoles in constructed wetlands,
Water Sci. Technol., 61 (2010) 191–198.
- J.S. Miller, D. Olejnik, Photolysis of polycyclic aromatic
hydrocarbons in water, Water Res., 35 (2001) 233–243.
- E. Felis, A. Sochacki, S. Magiera, Degradation of benzotriazole
and benzothiazole in treatment wetlands and by artificial
sunlight, Water Res., 104 (2016) 441–448.
- M.-R. Zare, M.-M. Amin, M. Nikaeen, B. Bina, A. Rahmani,
S. Hemmati-Borji, H. Rahmani, Acute toxicity of Hg, Cd, and Pb
towards dominant bacterial strains of sequencing batch reactor
(SBR), Environ. Monit. Assess., 187 (2015) 263, doi: 10.1007/
s10661-015-4457-y.
- A. Rahmani, A. Asadi, A. Fatehizadeh, A.R. Rahmani, M.R. Zare,
Interactions of Cd, Cr, Pb, Ni, and Hg in their effects on activated
sludge bacteria by using two analytical methods, Environ.
Monit. Assess., 191 (2019) 124, doi: 10.1007/s10661-019-7241-6.
- L.J. Hem, T. Hartnik, R. Roseth, G.D. Breedveld, Photochemical
degradation of benzotriazole, J. Environ. Sci. Health. Part A
Toxic/Hazard. Subst. Environ. Eng., 38 (2003) 471–481.