References
- V. Amudha, J. Rajesh Banu, I. Tae Yeom, Efficiency of zero
valent iron in the modified Fenton process for the reduction
of excess sludge and the key role of citric acid through
deflocculation, Desal. Water Treat., 71 (2017) 271–279.
- M.I. Badawy, M.E.M. Ali, Fenton’s peroxidation and coagulation
processes for the treatment of combined industrial and
domestic wastewater, J. Hazard. Mater., B13 (2006) 961–966.
- R. Dewil, J. Baeyens, E. Neyens, Fenton preoxidation improves
the drying performance of waste activated sludge, J. Hazard.
Mater., 117 (2005) 161–170.
- P.P. Gan, S. Fong, Y. Li, Efficient removal of Rhodamine B using
a rice hull-based silica supported iron catalyst by Fenton-like
process, Chem. Eng. J., 229 (2013) 351–363.
- L. Appels, J. Baeyens, J. Degreve, R. Dewil, Principles and
potential of the anaerobic digestion of waste-activated sludge,
Prog. Energy Combust. Sci., 34 (2008) 755–781.
- C.A. Wilson, J.T. Novak, Hydrolysis of macromolecular
components of primary and secondary wastewater sludge
by thermal hydrolytic pretreatment, Water Resour., 43 (2009)
4489–4498.
- M.C. Lu, C.J. Lin, C.H. Liao, R.Y. Yuan, W.P. Ting, Dewatering
of activated sludge by Fenton´s reagent, Adv. Environ. Res.,
7 (2003) 667–670.
- E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation
as an advanced oxidation technique, J. Hazard. Mater., 98 (2003)
33–50.
- M.A. Tony, Y.Q. Zhao, J.F. Fu, A.M. Tayeb, Conditioning of
aluminium-based water treatment sludge with Fenton’s reagent:
effectiveness and optimising study to improve dewaterability,
Chemosphere, 72 (2008) 673–677.
- T.T.H. Pham, S.K. Brar, R.D. Tyagi, R.Y Surampalli, Influence
of ultrasonication and Fenton oxidation
pre-treatment on
rheological characteristics of wastewater sludge, Ultrason.
Sonochem., 17 (2010) 38–45.
- N. Buyukkamaci, Biological sludge conditioning by Fenton’s
reagent, Process Biochem., 39 (2004) 1503–1506.
- G. Yu, P. He, Shao, Characteristics of extracellular polymeric
substances (EPS) fractions from excess sludges and their
effects on bioflocculability, Bioresour. Technol., 100 (2009)
3193–3198.
- J.E. Burgess, B.I. Pletschke, Hydrolytic enzymes in sewage
sludge treatment a mini-review, Water SA, 34 (2008) 343–349.
- C. Park, J.T. Novak, Characterization of activated sludge
exocellular polymers using several cation associated extraction
methods, Water Res., 41 (2007) 1679–1688.
- F. Lücking, H. Koser, M. Jank, A. Ritter, Iron powder, 1097
graphite and activated carbon as catalysts for the oxidation
of 1098 4-chlorophenol with hydrogen peroxide in aqueous
solution, Water Res., 32 (1998) 2607–2614.
- T. Yuranova, O. Enea, E. Mielcarski, J. Mielcarski, P. Albers,
J. Kiwi, Fenton immobilized photo-assisted catalysis through a
Fe/C structured fabric, Appl. Catal., B, 49 (2004) 39–50.
- J.Y. Feng, X.J. Hu, P.L. Yue, H.Y. Zhu, G.Q. Lu, Decoloration
and mineralization of reactive red HS-3B by heterogenous
photo-Fenton reaction, Water Res., 27 (2003) 3776–3784.
- M. Rodriguez, S. Malato, C. Pulgarian, S. Contreras, D. Curco,
Optimizing the solar photo-Fenton process in the treatment
of contaminated water: determination of intrinsic kinetic
constants for scale-up, Sol. Energy, 79 (2005) 360–368.
- APHA, Standard Methods for the Examination of Water and
Wastewater, 21st ed., American Public Health Association,
Washington, DC, 2005.
- V. Amudha, S. Kavitha, C. Fernandez, S. Adish Kumar,
J. Rajesh Banu, Effect of deflocculation on the efficiency of
sludge reduction by Fenton process, Environ. Sci. Pollut. Res.,
23 (2016) 19281–19291.
- Metcalf and Eddy, Wastewater Engineering Treatment and
Reuse, 4th ed., McGraw Hill Publication, 2003.
- S. Kavitha, S. Adishkumar, S. Kaliappan, I.T. Yeom, J. Rajesh
Banu, Improving the amenability of municipal waste activated
sludge for biological pretreatment by phase-separated sludge
disintegration method, Bioresour. Technol., 169 (2014)
700–706.
- J. Feng, X. Hu, P.L.Y. Ue, Decolorization and mineralization of
orange II by using a bentonite clay-based Fe nanocomposite
film as a heterogenous photo-Fenton catalyst, Water Res.,
39 (2005) 89–96.
- X.R. Xu, X.Y. Li, X.Z. Li, H.B. Li, Degradation of melatonin by
UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes, Sep. Purif.
Technol., 68 (2009) 261–266.
- Sc. Jiang, F. Pang, J. Ouyang, Ma., J. Jiang, A new insight
into Fenton and Fenton-like processes for water treatment,
J. Hazard. Mater., 174 (2010) 813–817.
- P.R. Gogate, A.B. Pandit, A review of imperative technologies
for wastewater treatment. I: Oxidation technologies at ambient
conditions, Adv. Environ. Res., 8 (2004a) 501–551.
- P.R. Gogate, A.R. Pandit, A review of imperative technologies
for wastewater treatment II: Hybird methods, Adv. Environ.
Res., 8 (2004b) 553–593.
- K. Barbusinski, The modified Fenton process for decolorization
of dye wastewater, Pol. J. Environ. Stud., 14 (2000) 2281–2285.
- B. Orgaz, J. Kives, A.M. Pedregosa, I.F. Monistrol, F. Laborda,
C. Sanjose, Bacterial biofilms removal using fungal enzymes,
Enzyme Microb. Technol., 40 (2006) 51–56.
- A.E. Vimala, S. Kaliappan, S. Adish Kumar, I.T. Yeom, J. Rajesh
Banu, Influence of deflocculation on microwave disintegration
and anaerobic biodegrability of waste activated sludge,
Bioresour. Technol., 185 (2015) 194–201.
- S. Kavitha, G.M. Jessin Brindha, A. Sally Gloriana,
K. Rajashankar, I.T. Yeom, J. Rajesh Banu, Enhancement of
aerobic biodegradability potential of municipal waste activated
sludge by ultrasonic aided bacterial disintegration, Bioresour.
Technol., 200 (2016) 161–169.
- S. Kavitha, S. Kaliappan, S. Adish Kumar, I.T. Yeom, J. Rajesh
Banu, Effect of NaCl induced floc disruption of biological
disintegration of sludge for enhanced biogas production,
Bioresour. Technol., 192 (2015) 807–811.
- S. Kavitha, R. Yukesh Kannah, M. Gunasekaran, J. Rajesh Banu,
G. Kumar, Rhamnolipid induced deagglomeration of anaerobic
granular biosolids for energetically feasible ultrasonic
homogenization and profitable bio hydrogen, Int. J. Hydrogen
Energy, 45 (2020) 5890–5899.
- S. Kavitha, M. Schikaran, R. Yukesh Kannah, M. Gunasekaran,
G. Kumar, J. Rajesh Banu, Nanoparticle induced biological
disintegration: a new phase-separated pretreatment strategy
on microalgal biomass for profitable biomethane recovery,
Bioresour. Technol., 289 (2019) 121624, doi: 10.1016/j.
biortech.2019.121624.