References

  1. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-waterenvironment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  2. M.W. Shahzad, M. Burhan, K.C. Ng, Pushing desalination recovery to the maximum limit: membrane and thermal processes integration, Desalination, 416 (2017) 54–64.
  3. K.C. Ng, K. Thu, S.J. Oh, L. Ang, M.W. Shahzad, A.B. Ismail, Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the MED and AD cycles, Desalination, 356 (2015) 255–270.
  4. M.W. Shahzad, K.C. Ng, K. Thu, B.B. Saha, W.G. Chun, Multi effect desalination and adsorption desalination (MEDAD): a hybrid desalination method, Appl. Therm. Eng., 72 (2014) 289–297.
  5. I.S. Al-Mutaz, I. Wazeer, Current status and future directions of MED-TVC desalination technology, Desal. Water Treat., 55 (2015) 1–9.
  6. H. Sayyaadi, A. Saffari, A. Mahmoodian, Various approaches in optimization of multi-effects distillation desalination systems using a hybrid meta-heuristic optimization tool, Desalination, 254 (2010) 138–148.
  7. H. Ghaebi, M.H. Saidi, P. Ahmadi, Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm, Appl. Therm. Eng., 36 (2012) 113–125.
  8. S. Naemi, M. Saffar-Avval, S.B. Kalhori, Z. Mansoori, Optimum design of dual pressure heat recovery steam generator using non-dimensional parameters based on thermodynamic and thermoeconomic approaches, Appl. Therm. Eng., 52 (2013) 371–384.
  9. O.A. Hamed, A.M. Zamamiri, S. Aly, N. Lior, Thermal performance and exergy analysis of a thermal vapor compression desalination system, Energy Convers. Manage., 37 (1996) 379–387.
  10. N.M. Al-Najem, M.A. Darwish, F.A. Youssef, Thermovapor compression desalters: energy and availability—analysis of single-and multi-effect systems, Desalination, 110 (1997) 223–238.
  11. F.N. Alasfour, M.A. Darwish, A.O. Bin Amer, Thermal analysis of ME—TVC+MEE desalination systems, Desalination, 174 (2005) 39–61.
  12. H.-S. Choi, T.-J. Lee, Y.-G. Kim, S.-L. Song, Performance improvement of multiple-effect distiller with thermal vapor compression system by exergy analysis, Desalination, 182 (2005) 239–249.
  13. I. Janghorban, Esfahani, A. Ataei, K.V. Shetty, T.S. Oh, J.H. Park, C.K. Yoo, Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system, Desalination, 292 (2012) 87–104.
  14. A. Binamer, Second law and sensitivity analysis of large ME-TVC desalination units, Desal. Water Treat., 53 (2015) 1234–1245.
  15. S. Sadri, R. Haghighi Khoshkhoo, M. Ameri, Multi-objective optimization of the MED-TVC system with exergetic and heat transfer analysis, Energy Equipsys, 5 (2017) 419–430.
  16. N. Eshoul, A. Almutairi, R. Lamidi, H. Alhajeri, A. Alenezi, Energetic, exergetic, and economic analysis of
    MED-TVC Water desalination plant with and without preheating, Water, 10 (2018) 1–17.
  17. M.L. Elsayed, O. Mesalhy, R.H. Mohammed, L.C. Chow, Exergy and thermo-economic analysis for MED-TVC desalination systems, Desalination, 447 (2018) 29–42.
  18. J. Khorshidi, N.S. Pour, T. Zarei, Exergy analysis and optimization of multi-effect distillation with thermal vapor compression system of Bandar Abbas Thermal Power Plant using genetic algorithm, Iran. J. Sci. Technol., 43 (2019) 13–24.
  19. M. Tontu, B. Sahin, M. Bilgili, An evaluation of multi-effect desalination with a thermal vapor compression system in terms of thermo-economics, Int. J. Exergy, 30 (2019) 126–138.
  20. C. Cao, L. Xie, S. Xu, Y. Du, Exergy analysis and optimization of MED–TVC system with different effect group divisions, Desalination, 500 (2021) 114891, doi: 10.1016/j.desal.2020.114891.
  21. H.M. Ettouney, H. El-Dessouky, Fundamentals of Salt Water Desalination, Kuwait University, Elsevier Science, Amsterdam, 2002.
  22. H. Sayyaadi, A. Saffari, Thermoeconomic optimization of multieffect distillation desalination systems, Appl. Energy, 87 (2010) 1122–1133.
  23. A. Almutairi, P. Pilidis, N. Al-Mutawa, M. Al-Weshahi, Energetic and exergetic analysis of cogeneration power combined cycle ad ME-TVC-MED water desalination plant: Part-1 operation and performance, Appl. Therm. Eng., 103 (2016) 77–91.
  24. R. Terzi, Application of Exergy Analysis to Energy Systems, Application of Exergy, Tolga Taner, IntechOpen, London, UK, 2018.
  25. M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, Thermophysical properties of seawater: a review of existing correlations and data, Desal. Water Treat., 16 (2010) 354–380.
  26. International Association for the Properties of Water and Steam, Release on the IAPWS Formulation for the Thermodynamic Properties of Seawater, 2008.
  27. H. Preston-Thomas, The international temperature scale of 1990, Metrologia, 27 (1990) 3–10.
  28. J.D. Isdale, R. Morris, Physical properties of seawater solutions: density, Desalination, 10 (1972) 329–339.
  29. F.J. Millero, A. Poisson, International one-atmosphere equation of state of seawater, Deep-Sea Res., 28A (1981) 625–629.
  30. International Association for the Properties of Water and Steam, Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, 1996.
  31. M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, On exergy calculations of seawater with applications in desalination systems, Int. J. Therm. Sci., 50 (2011) 187–196.
  32. K.C. Ng, M. Burhan, Q. Chen, D. Ybyraiykul, F.H. Akhtar, M. Kumja, R.W. Field, M.W. Shahzad, A thermodynamic platform for evaluating the energy efficiency of combined power generation and desalination plants, NPJ Clean Water, 4–1 (2021) 1–10.
  33. M.W. Shahzad, M. Burhan, K.C. Ng, A standard primary energy approach for comparing desalination processes, NPJ Clean Water, 1 (2019) 1–7.
  34. K.C. Ng, M.W. Shahzad, H.S. Son, O.A. Hamed, An exergy approach to efficiency evaluation of desalination, Appl. Phys. Lett., 110 (2017) 184101, doi: 10.1063/1.4982628.
  35. M.W. Shahzad, M. Burhan, H.S. Son, S.J. Oh, K.C. Ng, Desalination processes evaluation at common platform:
    a universal performance ratio (UPR) method, Appl. Therm. Eng., 134 (2018) 62–67.
  36. M.H. Sharqawy, J.H. Lienhard V, S.M. Zubair, Erratum to thermophysical properties of seawater: a review of existing correlations and data, Desal. Water Treat., 29 (2011) 355–355.
  37. M.M. Ashour, Steady-state analysis of the Tripoli West LT-HTMED plant, Desalination, 152 (2003) 191–194.
  38. C. Temstet, G. Canton, J. Laborie, A. Durante, A large highperformance MED plant in Sicily, Desalination, 105 (1996) 109–114.
  39. I. Baniasad Askari, M. Ameri, Thermodynamic analysis of multi-effect desalination unit with thermal vapor compression feed by different motive steam pressures, Desal. Water Treat., 184 (2020) 57–71.
  40. F. Alamolhoda, R. KouhiKamali, M. Asgari, Parametric simulation of MED–TVC units in operation, Desal. Water Treat., 57 (2016) 246–260.
  41. H. Fathia, K. Tahar, B.Y. Ali, B.B. Ammar, Exergoeconomic optimization of a double effect desalination unit used in an industrial steam power plant, Desalination, 438 (2018) 63–82.
  42. A.M. Abusorrah, F. Mebarek-Oudina, A. Ahmadian, D. Baleanu, Modeling of a MED-TVC desalination system by considering the effects of nanoparticles: energetic and exergetic analysis, J. Therm. Anal. Calorim., 144 (2021) 2675–2687.
  43. G.P. Narayan, M.G.S. John, S.M. Zubair, J.H. Lienhard V, Thermal design of the humidification dehumidification desalination system: an experimental investigation, Int. J. Heat Mass Transfer, 58 (2013) 740–748.
  44. Y. Roy, G.P. Thiel, M.A. Antar, J.H. Lienhard V, The effect of increased top brine temperature on the performance and design of OT-MSF using a case study, Desalination, 412 (2017) 32–38.
  45. K.H. Mistry, M.A. Antar, J.H. Lienhard V, An improved model for multiple effect distillation, Desal. Water Treat., 51 (2013) 807–821.