References

  1. G.Z. Teklehaimanot, I. Kamika, M.A.A. Coetzee, M.N.B. Momba, Population growth and its impact on the design capacity and performance of the wastewater treatment plants in Sedibeng and Soshanguve, South Africa, Environ. Manage., 56 (2015) 984–997.
  2. A. Mukhopadhyay, A. Akber, Sustainable water management in Kuwait: current situation and possible correctional measures, Int. J. Sustainable Dev. Plann., 13 (2018) 425–435.
  3. W.E. Walker, D.P. Loucks, G. Carr, Social responses to water management decisions, Environ. Process., 2 (2015) 485–509.
  4. E.E. Aleisa, K. Al-Shayji, Analysis on reclamation and reuse of wastewater in Kuwait, J. Eng. Res., 7 (2019) 1–13.
  5. S. Evangelista, G. Viccione, O. Siani, Experimental data of the laboratory investigation for the design of a new filter cartridge for water treatment, Data Brief, 22 (2019) 296–306.
  6. T. Poerio, E. Piacentini, R. Mazzei, Membrane processes for microplastic removal, Molecules, 24 (2019) 4148, doi: 10.3390/ molecules24224148.
  7. X. Li, L. Jiang, H. Li, Application of ultrafiltration technology in water treatment, IOP Conf. Ser.: Earth Environ. Sci., 186 (2018) 012009, doi: 10.1088/1755-1315/186/3/012009.
  8. R.T. Bray, K. Jankowska, E. Kulbat, A. Łuczkiewicz, A. Sokołowska, Ultrafiltration process in disinfection and advanced treatment of tertiary treated wastewater, Membranes, 11 (2021) 221, doi:10.3390/membranes11030221.
  9. W. Tomczak, M. Gryta, Application of ultrafiltration ceramic membrane for separation of oily wastewater generated by maritime transportation, Sep. Purif. Technol., 261 (2021) 118259, doi:10.1016/j.seppur.2020.118259.
  10. V. Vairagade, Activated carbon as adsorbent in advance treatment of wastewater, J. Mech. Civ. Eng. IOSR-JMCE, 14 (2017) 36–40.
  11. Water Treatment Activated Carbon Activated Carbon, BMS FACTORIES. (n.d.). Available at: https://www.bm.com.sa/product/water-treatment-activated-carbon/ (accessed September 24, 2021).
  12. C. Campos, I. Baudin, J.M. Lainé, Adsorption performance of powdered activated carbon-ultrafiltration systems, Water Supply, 1 (2001) 13–19.
  13. C. Baresel, M. Harding, J. Fång, Ultrafiltration/granulated active carbon-biofilter: efficient removal of a broad range of micropollutants, Appl. Sci., 9 (2019) 710, doi: 10.3390/app9040710.
  14. M. Abbasi, M. Reza Sebzari, T. Mohammadi, Enhancement of oily wastewater treatment by ceramic microfiltration membranes using powder activated carbon, Chem. Eng. Technol., 34 (2011) 1252–1258.
  15. S.A. Younis, H.A. Maitlo, J. Lee, K.-H. Kim, Nanotechnologybased sorption and membrane technologies for the treatment of petroleum-based pollutants in natural ecosystems and wastewater streams, Adv. Colloid Interface Sci., 275 (2020) 102071, doi: 10.1016/j.cis.2019.102071.
  16. A.G. Pervov, E.V. Dudkin, O.A. Sidorenko, V.V. Antipov, S.A. Khakhanov, R.I. Makarov, RO and NF membrane systems for drinking water production and their maintenance techniques, Desalination, 132 (2000) 315–321.
  17. N.A. Ahmad, P.S. Goh, L.T. Yogarathinam, A.K. Zulhairun, A.F. Ismail, Current advances in membrane technologies for produced water desalination, Desalination, 493 (2020) 114643, doi:10.1016/j.desal.2020.114643.
  18. S. Chaoua, S. Boussaa, A. El Gharmali, A. Boumezzough, Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco, J. Saudi Soc. Agric. Sci., 18 (2019) 429–436.
  19. T. Tran, Standard Methods for the Examination of Water and Wastewater, 23rd ed., 2020. Available at: https://www.academia. edu/38769108/Standard_Methods_For_the_Examination_of_ Water_and_Wastewater_23nd_edition (accessed February 21, 2020).
  20. Y. Elmeddahi, H. Mahmoudi, A. Issaadi, M.F.A. Goosen, Analysis of treated wastewater and feasibility for reuse in irrigation: a case study from Chlef, Algeria, Desal. Water Treat., 57 (2016) 5222–5231.
  21. R.F. Keeling, H.E. Garcia, The change in oceanic O2 inventory associated with recent global warming, Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 7848–7853.
  22. M. Reich, T. Aghajanzadeh, J. Helm, S. Parmar, M.J. Hawkesford, L.J. De Kok, Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica Rapa, Plant Soil, 411 (2017) 319–332.
  23. P. Shrivastava, R. Kumar, Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation, Saudi J. Biol. Sci., 22 (2015) 123–131.
  24. D. Shukla, C.A. Rinehart, S.V. Sahi, Comprehensive study of excess phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development, Sci. Rep., 7 (2017) 3074, doi:10.1038/s41598-017-03061-9.
  25. C. Chahal, B. van den Akker, F. Young, C. Franco, J. Blackbeard, P. Monis, Pathogen and Particle Associations in Wastewater, in: Adv. Appl. Microbiol., Elsevier, United States, 2016, pp. 63–119. https://doi.org/10.1016/bs.aambs.2016.08.001.
  26. E. Dialynas, E. Diamadopoulos, Integration of immersed membrane ultrafiltration with coagulation and activated carbon adsorption for advanced treatment of municipal wastewater, Desalination, 230 (2008) 113–127.
  27. Usersmanual-en.pdf, (n.d.). Available at: http://www.fao.org/ tempref/GI/Reserved/FTP_FaoRne/morelinks/Publications/ English/Usersmanual-en.pdf (accessed January 18, 2021).
  28. X. Dai, J. Fang, L. Li, Y. Dong, J. Zhang, Enhancement of COD removal from oilfield produced wastewater by combination of advanced oxidation, adsorption and ultrafiltration, Int. J. Environ. Res. Public Health, 16 (2019) 3223, doi: 10.3390/ ijerph16173223.
  29. J. Peng, K. Kumar, M. Gross, T. Kunetz, Z. Wen, Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor, Water Environ. Res., 92 (2020) 766–778.
  30. P. Fang, Z. Tang, X. Chen, J. Huang, Z. Tang, C. Cen, Removal of high-concentration sulfate ions from the sodium alkali FGD wastewater using ettringite precipitation method: factor assessment, feasibility, and prospect, J. Chem., 2018 (2018) 1–8, doi: 10.1155/2018/1265168.
  31. View of Cost/Benefit Evaluation of Sulaibiya Wastewater Treatment Plant in Kuwait, (n.d.). Available at: https:// clutejournals.com/index.php/IBER/article/view/518/505
  32. View of Residential Wastewaters Treatment System in Kuwait, chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ viewer.html?pdfurl=http%3A%2F%2Fipcbee.com%2Fvol6% 2Fno1%2F64-F00123.pdf&clen=1674121&chunk=true