References

  1. Y.A. Aydın, N.D. Aksoy, Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics, Chem. Eng. J., 151 (2009) 188–194.
  2. M. Omidinasab, N. Rahbar, M. Ahmadi, B. Kakavandi, F. Ghanbari, G.Z. Kyzas, S.S. Martinez, N. Jaafarzadeh, Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles, Environ. Sci. Pollut. Res. Int., 25 (2018) 34262–34276.
  3. H. Gao, J. Du, Y. Liao, Removal of chromium(VI) and orange II from aqueous solution using magnetic polyetherimide/ sugarcane bagasse, Cellulose, 26 (2019) 3285–3297.
  4. Y. Liu, Q. Yu, J. Xu, Z. Yuan, Evaluation of structural factors affecting high solids enzymatic saccharification of alkali-pretreated sugarcane bagasse, Cellulose, 27 (2020) 1441–1450.
  5. A. Zanchetta, A.C.F. dos Santos, E. Ximenes, C. da Costa Carreira Nunes, M. Boscolo, E. Gomes, M.R. Ladisch, Temperature dependent cellulase adsorption on lignin from sugarcane bagasse, Bioresour. Technol., 252 (2018) 143–149.
  6. M. Bansal, B. Ram, G.S. Chauhan, A. Kaushik, L-Cysteine functionalized bagasse cellulose nanofibers for mercury(II) ions adsorption, Int. J. Biol. Macromol., 112 (2018) 728–736.
  7. H. Demiral, C. Güngör, Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, J. Cleaner Prod., 124 (2016) 103–113.
  8. N. Sun, X. Wen, C. Yan, Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse, Int. J. Biol. Macromol., 108 (2018) 1199–1206.
  9. G. Chu, J. Zhao, Y. Huang, D. Zhou, Y. Liu, M. Wu, H. Peng, Q. Zhao, B. Pan, C.E.W. Steinberg, phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores, Environ. Pollut., 240 (2018) 1–9.
  10. Y. Gokce, Z. Aktas, Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol, Appl. Surf. Sci., 313 (2014) 352–359.
  11. Z. Fang, H. Liu, Z. Wang, D. Wen, X. Long, Effect of activated carbon modified with oxalic acid on the production of IPA from MX catalyzed by H3PW12O40@carbon and cobalt, J. Ind. Eng. Chem., 68 (2018) 87–98.
  12. Y. Cao, Y. Gu, K. Wang, X. Wang, Z. Gu, T. Ambrico, M.A. Castro, J. Lee, W. Gibbons, J.A. Rice, Adsorption of creatinine on active carbons with nitric acid hydrothermal modification, J. Taiwan Inst. Chem. Eng., 66 (2016) 347–356.
  13. A. Sari, M. Tuzen, Cd(II) adsorption from aqueous solution by raw and modified kaolinite, Appl. Clay Sci., 88–89 (2014) 63–72.
  14. E. Igberase, P. Osifo, Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution, J. Ind. Eng. Chem., 26 (2015) 340–347.
  15. A. Zhou, X. Ma, C. Song, Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel, Appl. Catal., B, 87 (2009) 190–199.
  16. Y. Guo, D.A. Rockstraw, Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation, Bioresour. Technol., 98 (2007) 1513–1521.
  17. M.M. Keyser, F.F. Prinsloo, Loading of cobalt on carbon nanofibers, Stud. Surf. Sci. Catal., 163 (2007) 45–73.
  18. H. Lee, Y. Seo, J. Lee, Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis, Bioresour. Technol., 133 (2013) 87–91.
  19. H.W. Kwak, M.K. Kim, J.Y. Lee, H. Yun, M.H. Kim, Y.H. Park, K.H. Lee, Preparation of bead-type biosorbent from watersoluble Spirulina platensis extracts for chromium(VI) removal, Algal Res., 7 (2015) 92–99.
  20. M.K. Gagrai, C. Das, A.K. Golder, Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies, Chemosphere, 93 (2013) 1366–1371.
  21. H. Chen, G. Dai, J. Zhao, A. Zhong, J. Wu, H. Yan, Removal of copper(II) ions by a biosorbent—Cinnamomum camphora leaves powder, J. Hazard. Mater., 177 (2010) 228–236.
  22. C.S. Sundaram, N. Viswanathan, S. Meenakshi, Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies, J. Hazard. Mater., 155 (2008) 206–215.
  23. A. Shukla, Y. Zhang, P. Dubey, J.L. Margrave, S.S. Shukla, The role of sawdust in the removal of unwanted materials from water, J. Hazard. Mater., 95 (2002) 137–152.
  24. L. Wu, W. Wan, Z. Shang, X. Gao, N. Kobayashi, G. Luo, Z. Li, Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions, Sep. Purif. Technol., 197 (2018) 156–169.
  25. L. Xu, M. Wan, S. Li, S. Xu, Z. Zhao, W. Ma, Modified kaolin processing wastewater containing chromium, Shandong Chem. Ind., 48 (2019) 230–232.
  26. Z. Zhang, Adsorption behavior of Cr(Vl) by the activated carbon from corncob residues, J. Anhui Agric. Sci., 47 (2019) 78–82.
  27. Z. Sheng, Y. Shen, H. Dai, S. Pan, B. Ai, L. Zheng, X. Zheng, Z. Xu, Physicochemical characterization of raw and modified banana pseudostem fibers and their adsorption capacities for heavy metal Pb2+ and Cd2+ in water, Polym. Compos., 39 (2018) 1869–1877.
  28. Z. Wang, J.P. Barford, C.W. Hui, G. McKay, Kinetic and equilibrium studies of hydrophilic and hydrophobic rice husk cellulosic fibers used as oil spill sorbents, Chem. Eng. J., 281 (2015) 961–969.
  29. Z.A. Sutirman, M.M. Sanagi, K.J. Abd Karim, W.A.W. Ibrahim, B.H. Jume, Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads, Int. J. Biol. Macromol., 116 (2018) 255–263.
  30. S. Gogoi, R.K. Dutta, Mechanism of fluoride removal by phosphoric acid-enhanced limestone: equilibrium and kinetics of fluoride sorption, Desal. Water Treat., 57 (2016) 6838–6851.
  31. S. He, Y. Li, L. Weng, J. Wang, J. He, Y. Liu, K. Zhang, Q. Wu, Y. Zhang, Z. Zhang, Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: influence of pH, ionic strength and natural organic matters, Sci. Total Environ., 637–638 (2018) 69–78.
  32. Y. Li, J. Zhang, H. Liu, In-situ modification of activated carbon with ethylenediaminetetraacetic acid disodium salt during phosphoric acid activation for enhancement of nickel removal, Powder Technol., 325 (2018) 113–120.