References

  1. X. Wang, W. Cui, M. Wang, Y. Liang, G. Zhu, T. Jin, X. Chen, The association between life-time dietary cadmium intake from rice and chronic kidney disease, Ecotoxicol. Environ. Saf., 211 (2021) 111933, doi:10.1016/j.ecoenv.2021.111933.
  2. Y. Ma, D. Ran, X. Shi, H. Zhao, Z. Liu, Cadmium toxicity: a role in bone cell function and teeth development, Sci. Total Environ., 769 (2021) 144646, doi: 10.1016/j.scitotenv.2020.144646.
  3. Suhani, S. Sahab, V. Srivastava, R.P. Singh, Impact of cadmium pollution on food safety and human health, Curr. Opin. Toxicol., 27 (2021) 1–7, doi: 10.1016/j.cotox.2021.04.004.
  4. D.L. Knoell, T.A. Wyatt, The adverse impact of cadmium on immune function and lung host defense, Semin. Cell Dev. Biol., 115 (2020) 70–76.
  5. J. Wu, X. Dong, Y. Zheng, J. Zhang, Progress in molecular mechanism of cadmium carcinogenesis, Asian J. Ecotoxicol., 10 (2015) 54–61.
  6. A.J. Malin, R.O. Wright, The Developmental Neurotoxicity of Cadmium, W. Slikker, M.G. Paule, C. Wang, Eds., Handbook of Developmental Neurotoxicology, 2nd ed., Academic Press, New York, 2018, pp. 407–412.
  7. M. Waisberg, P. Joseph, B. Hale, D. Beyersmann, Molecular and cellular mechanisms of cadmium carcinogenesis, Toxicology, 192 (2003) 95–117.
  8. D. Purkayastha, U. Mishra, S. Biswas, A comprehensive review on Cd(II) removal from aqueous solution,
    J. Water Process Eng., 2 (2014) 105–128.
  9. Z. Peng, X. Lin, Y. Zhang, Z. Hu, X. Yang, C. Chen, H. Chen, Y. Li, J. Wang, Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum, Sci. Total Environ., 772 (2021) 145355, doi: 10.1016/j.scitotenv. 2021.145355.
  10. S. Li, S. Li, N. Wen, D. Wei, Y. Zhang, Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica, Sep. Purif. Technol., 265 (2021) 118341, doi:10.1016/j.seppur.2021.118341.
  11. K. Pyrzynska, Removal of cadmium from wastewaters with low-cost adsorbents, J. Environ. Chem. Eng., 7 (2019) 102795, doi: 10.1016/j.jece.2018.11.040.
  12. Y. Sun, T. Wang, X. Sun, L. Bai, C. Han, P. Zhang, The potential of biochar and lignin-based adsorbents for wastewater treatment: comparison, mechanism, and application—a review, Ind. Crops Prod., 166 (2021) 113473, doi: 10.1016/j.indcrop.2021.113473.
  13. W. Zhang, L. Xiu, D. Wu, Y. Sun, W. Gu, Y. Zhang, J. Meng, W. Chen. Review and prospect on the structure and physicochemical properties of biochar, Acta Agron. Sin., 47 (2021) 1–18.
  14. T. Varadavenkatesan, R. Vinayagam, S. Pai, B. Kathirvel, A. Pugazhendhi, R. Selvaraj, Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings, Prog. Org. Coat., 151 (2021) 106056, doi: 10.1016/j.porgcoat.2020.106056.
  15. V. Vandeginste, Food waste eggshell valorization through development of new composites: a review, Sustainable Mater. Technol., 29 (2021) e00317, doi: 10.1016/j.susmat.2021.e00317.
  16. Y. Feng, B. Ashok, K. Madhukar, J.M. Zhang, J. Zhang, K.O. Reddy, A.V. Rajulu, Preparation and characterization of polypropylene carbonate bio-filler (eggshell powder) composite films, Int. J. Polym. Anal. Charact., 19 (2014) 637–647.
  17. A.S.M. Bashir, Y. Manusamy, Characterization of raw egg shell powder (ESP) as a good bio-filler, J. Eng. Res. Technol., 2 (2015) 56–60.
  18. P.S. Katha, Z. Ahmed, R. Alam, B. Saha, A. Acharjee, M.S. Rahman, Efficiency analysis of eggshell and tea waste as low cost adsorbents for Cr removal from wastewater sample, S. Afr. J. Chem. Eng., 37 (2021) 186–195.
  19. E.R.E. Hassan, M. Rostom, F.E. Farghaly, M.A.A. Khalek, Biosorption for tannery effluent treatment using eggshell wastes; kinetics, isotherm and thermodynamic study, Egypt. J. Pet., 29 (2020) 273–278.
  20. X. Li, Y. Qin, Y. Jia, Y. Li, Y. Zhao, Y. Pan, J. Sun, Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: a review, Chemosphere, 274 (2021) 129766, doi:10.1016/j.chemosphere.2021.129766.
  21. T. Ma, C. Yang, X. Jiang, Z. Dang, X. Li, Preparation of nano zero valent iron modified amino biochar and its adsorption and desorption properties for Cd(II), Chin. J. Environ. Eng., 10 (2016) 5433–5439.
  22. Z. Zhu, C.P. Huang, Y. Zhu, W. Wei, H. Qin, A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water, J. Water Process. Eng., 25 (2018) 96–104.
  23. Y. Yang, Y. Zhang, G. Wang, Z. Yang, J. Xian, Y. Yang, T. Li, Y. Pu, Y. Jia, Y. Li, Z. Cheng, S. Zhang, X. Xu, Adsorption and reduction of Cr(VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution,
    J. Environ. Chem. Eng., 9 (2021) 105407, doi: 10.1016/j.jece.2021.105407.
  24. J. Yuan, Y. Qian, G. Xue, Q. Zhang, Q. Li, Z. Liu, X. Li. Preparation of magnetic carbon from activated sludge by hydrothermal carbonization and removal of Cd2+ and Pb2+ from water, Environ. Eng. (China), 38 (2020) 55–62.
  25. Y. Feng, P. Liu, Y. Wang, W. Liu, Y. Liu, Y.Z. Finfrock. Mechanistic investigation of mercury removal by unmodified and Fe-modified biochars based on synchrotron-based methods, Sci. Total Environ., 719 (2020) 137435, doi: 10.1016/j. scitotenv.2020.137435.
  26. F. Reguyal, A.K. Sarmaha, W. Gao, Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl2 for the removal sulfamethoxazole from aqueous solution, J. Hazard. Mater., 321 (2017) 868–878.
  27. Y. Ma, Y. Qi, L. Yang, L. Wu, P. Li, F. Gao, X. Qi, Z. Zhang, Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: adsorption efficiency, mechanism and regeneration, J. Cleaner Prod., 292 (2021) 126005, doi: 10.1016/j.jclepro.2021.126005.
  28. L. Trakal, V. Veselská, I. Šafařík, M. Vítková, S. Číhalová, M. Komárek, Lead and cadmium sorption mechanisms on magnetically modified biochars, Bioresour. Technol., 203 (2016) 318–324.
  29. Y. Xie, X. Yuan, Z. Wu, G. Zeng, L. Jiang, X. Peng, H. Li, Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II), J. Colloid Interface Sci., 536 (2019) 440–455.
  30. K.-W. Jung, B.H. Choi, T.-U. Jeong, K.-H. Ahn, Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electromagnetization technique and its application on the removal of acid orange 7 from aqueous media, Bioresour. Technol., 220 (2016) 672–676.
  31. F. Huang, L.Y. Gao, J.H. Deng, S.H. Chen, K.Z. Cai, Quantitative contribution of Cd2+ adsorption mechanisms by chicken manure-derived biochars, Environ. Sci. Pollut. Res., 25 (2018) 28322–28334.
  32. Z. Chen, J. Zhang, L. Huang, Z. Yuan, Z. Li, M. Liu, Removal of Cd and Pb with biochar made from dairy manure at low temperature, J. Integr. Agric., 18 (2019) 201–210.
  33. E.C. Lima, F. Sher, A. Guleria, M.R. Saeb, I. Anastopoulos, H.N. Tran, A. Hosseini-Bandegharaei, Is one performing the treatment data of adsorption kinetics correctly?, J. Environ. Chem. Eng., 9 (2021) 104813, doi:10.1016/j.jece.2020.104813.
  34. Y. Zhou, X. Liu, Y. Xiang, P. Wang, J. Zhang, F. Zhang, J. Wei, L. Luo, M. Lei, L. Tang, Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling, Bioresour. Technol., 245 Part A (2017) 266–273.
  35. Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap, S. Gibb, Utilizing low-cost natural waste for the removal of pharmaceuticals from water: mechanisms, isotherms and kinetics at low concentrations, J. Cleaner Prod., 227 (2019) 88–97.
  36. Y. Xiao, Y. Xue, F. Gao, A. Mosa, Sorption of heavy metal ions onto crayfish shell biochar: effect of pyrolysis temperature, pH and ionic strength, J. Taiwan Inst. Chem. Eng., 80 (2017) 114–121.
  37. X. Dong, L.Q. Ma, Y. Li, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing, J. Hazard. Mater., 190 (2011) 909–915.
  38. S. Zhuang, Y. Liu, J. Wang, Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution, J. Hazard. Mater., 383 (2020) 121126, doi: 10.1016/j. jhazmat.2019.121126.
  39. B.-J. Ni, Q.-S. Huang, C. Wang, T.-Y. Ni, J. Sun, W. Wei, Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge, Chemosphere, 219 (2019) 351–357.
  40. Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang, S.-M. Yang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions, J. Solid State Chem., 261 (2018) 53–61.
  41. J. Deng, Y. Liu, S. Liu, G. Zeng, X. Tan, B. Huang, X. Tang, S. Wang, Q. Hua, Z. Yan, Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar, J. Colloid Interface Sci., 506 (2017) 355–364.
  42. Y. Liu, L. Wang, X. Wang, F. Jing, R. Chang, J. Chen, Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II), Sci. Total Environ., 725 (2020) 138419, doi:10.1016/j.scitotenv.2020.138419.
  43. C.H. Lai, S.L. Lo, H.L. Chiang, Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses, Chemosphere, 41 (2000) 1249–1255.
  44. T. Yang, Y. Xu, Q. Huang, Y. Sun, X. Liang, L. Wang, X. Qin, L. Zhao, Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(II) in water, Bioresour. Technol., 333 (2021) 125078, doi: 10.1016/j.biortech.2021.125078.
  45. J. Wu, D. Huang, X. Liu, J. Meng, C. Tang, J. Xu, Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar, J. Hazard. Mater., 348 (2018) 10–19.
  46. Y. Lin, P. Munroe, S. Joseph, A. Ziolkowski, L. van Zwieten, S. Kimber, J. Rust, Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chickenlitter, clay and minerals, Chemosphere, 91 (2013) 35–40.