References

  1. S. Ahmad Mokhtari, M. Gholami, A. Dargahi, M. Vosoughi, Removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated sewage sludge using advanced oxidation process (hydrogen peroxide and sodium persulfate), Desal. Water Treat., 213 (2021) 311–318.
  2. M. Mobini, H. Biglari, A. Dargahi, A. Zarei, M.R. Narooie, E.A. Mehrizi, Aniline adsorption from aqueous solutions using dried activated sludge, Pollut. Res., 36 (2017) 428–436.
  3. G. Xue, M. Zheng, Y. Qian, Q. Li, P. Gao, Z. Liu, H. Chen, X. Li, Comparison of aniline removal by UV/CaO2 and UV/H2O2: degradation kinetics and mechanism, Chemosphere, 255 (2020) 126983, doi:10.1016/j.chemosphere.2020.126983.
  4. J. Zhang, Y. Wu, C. Qin, L. Liu, Y. Lan, Rapid degradation of aniline in aqueous solution by ozone in the presence of zero-valent zinc, Chemosphere, 141 (2015) 258–264.
  5. Y. Qin, S. Luo, S. Geng, W. Jiao, Y. Liu, Degradation and mineralization of aniline by O3/Fenton process enhanced using high-gravity technology, Chin. J. Chem. Eng., 26 (2018) 1444–1450.
  6. J. O’Brien, T.F. O’Dwyer, T. Curtin, A novel process for the removal of aniline from wastewaters, J. Hazard. Mater., 159 (2008) 476–482.
  7. Y. Liu, G. Zhang, S. Fang, S. Chong, J. Zhu, Degradation of aniline by heterogeneous Fenton’s reaction using a Ni-Fe oxalate complex catalyst, J. Environ. Manage., 182 (2016) 367–373.
  8. J. Anotai, C.C. Su, Y.C. Tsai, M.C. Lu, Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes, J. Hazard. Mater., 183 (2010) 888–893.
  9. B. Ou, J. Wang, Y. Wu, S. Zhao, Z. Wang, A highly efficient cathode based on modified graphite felt for aniline degradation by electro-Fenton, Chemosphere, 235 (2019) 49–57.
  10. J. Anotai, M.C. Lu, P. Chewpreecha, Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Res., 40 (2006) 1841–1847.
  11. B. Ma, W. Lv, J. Li, C. Yang, Q. Tang, D. Wang, Promotion removal of aniline with electro-Fenton processes utilizing carbon nanotube 3D morphology modification of an Ag-loaded copper foam cathode, J. Water Process Eng., 43 (2021) 102295, doi: 10.1016/j.jwpe.2021.102295.
  12. D. Liu, H. Zhang, Y. Wei, B. Liu, Y. Lin, G. Li, F. Zhang, Enhanced degradation of ibuprofen by heterogeneous electro-Fenton at circumneutral pH, Chemosphere, 209 (2018) 998–1006.
  13. X. Liu, Y. Zhou, J. Zhang, L. Luo, Y. Yang, H. Huang, H. Peng, L. Tang, Y. Mu, Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps, Chem. Eng. J., 347 (2018) 379–397.
  14. J. Meijide, S. Rodríguez, M.A. Sanromán, M. Pazos, Comprehensive solution for acetamiprid degradation: combined electro-Fenton and adsorption process, J. Electroanal. Chem., 808 (2018) 446–454.
  15. R. Nazari, L. Rajic, A. Ciblak, S. Hernandez, I.E. Mousa, W. Zhou, D. Bhattacharyya, A.N. Alshawabkeh, Immobilized palladiumcatalyzed electro-Fenton’s degradation of chlorobenzene in groundwater, Chemosphere, 216 (2019) 556–563.
  16. V. Poza-Nogueiras, E. Rosales, M. Pazos, M.A. Sanroman, Current advances and trends in electro-Fenton process using heterogeneous catalysts – a review, Chemosphere, 201 (2018) 399–416.
  17. T. Sruthi, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes, Chemosphere, 210 (2018) 38–43.
  18. K. Zhao, X. Quan, S. Chen, H. Yu, Y. Zhang, H. Zhao, Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater, Chem. Eng. J., 354 (2018) 606–615.
  19. S. Zhang, X. Pang, Z. Yue, Y. Zhou, H. Duan, W. Shen, J. Li, Y. Liu, Q. Cheng, Sulfonamides removed from simulated livestock and poultry breeding wastewater using an in-situ electro-Fenton process powered by photovoltaic energy, Chem. Eng. J., 397 (2020) 125466, doi: 10.1016/j.cej.2020.125466.
  20. G. Ren, M. Zhou, P. Su, W. Yang, X. Lu, Y. Zhang, Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode,
    J. Hazard. Mater., 368 (2019) 830–839.
  21. M. Heidari, M. Vosoughi, H. Sadeghi, A. Dargahi, S.A. Mokhtari, Degradation of diazinon from aqueous solutions by electro-Fenton process: effect of operating parameters, intermediate identification, degradation pathway, and optimization using response surface methodology (RSM), Sep. Sci. Technol., 56 (2020) 2287–2299.
  22. G. Divyapriya, I. Nambi, J. Senthilnathan, Ferrocene functionalized graphene based electrode for the
    electro-Fenton oxidation of ciprofloxacin, Chemosphere, 209 (2018) 113–123.
  23. C.M. Dominguez, N. Oturan, A. Romero, A. Santos, M.A. Oturan, Optimization of electro-Fenton process for effective degradation of organochlorine pesticide lindane, Catal. Today, 313 (2018) 196–202.
  24. S.O. Ganiyu, M. Zhou, C.A. Martínez-Huitle, Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment, Appl. Catal., B, 235 (2018) 103–129.
  25. S. Yuan, Y. Fan, Y. Zhang, M. Tong, P. Liao, Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-Fenton degradation of Rhodamine B, Environ. Sci. Technol., 45 (2011) 8514–8520.
  26. D. Kubo, Y. Kawase, Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode, J. Cleaner Prod., 203 (2018) 685–695.
  27. M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, C. Zhang, J. Wan, L. Hu, C. Zhou, W. Xiong, Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2
    Fenton-like system, Water Res., 138 (2018) 7–18.
  28. A. Dargahi, K. Hasani, S.A. Mokhtari, M. Vosoughi, M. Moradi, Y. Vaziri, Highly effective degradation of
    2,4-dichlorophenoxyacetic acid herbicide in a three-dimensional sono-electro-Fenton (3D/SEF) system using powder activated carbon (PAC)/Fe3O4 as magnetic particle electrode, J. Environ. Chem. Eng., 9 (2021) 105889, doi: 10.1016/j.jece.2021.105889.
  29. K. Hasani, A. Peyghami, A. Moharrami, M. Vosoughi, A. Dargahi, The efficacy of sono-electro-Fenton process for removal of cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms, Arabian J. Chem., 13 (2020) 6122–6139.
  30. M.R. Samarghandi, A. Ansari, A. Dargahi, A. Shabanloo, D. Nematollahi, M. Khazaei, H.Z. Nasab, Y. Vaziri, Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor, J. Environ. Chem. Eng., 9 (2021) 106072, doi: 10.1016/j.jece.2021.106072.
  31. M.R. Samarghandi, A. Dargahi, A. Rahmani, A. Shabanloo, A. Ansari, D. Nematollahi, Application of a fluidized threedimensional electrochemical reactor with Ti/SnO2-Sb/beta-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: process optimization and degradation pathway, Chemosphere, 279 (2021) 130640, doi: 10.1016/j.chemosphere.2021.130640.
  32. M.R. Samarghandi, A. Dargahi, A. Shabanloo, H.Z. Nasab, Y. Vaziri, A. Ansari, Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater, Arabian J. Chem., 13 (2020) 6847–6864.
  33. M.R. Samarghandi, D. Nemattollahi, G. Asgari, R. Shokoohi, A. Ansari, A. Dargahi, Electrochemical process for 2,4-D herbicide removal from aqueous solutions using stainless steel 316 and graphite anodes: optimization using response surface methodology, Sep. Sci. Technol., 54 (2018) 478–493.
  34. S. Zhang, Z. Yue, X. Pang, M. Pan, J. Tang, X. Cheng, J. Li, Y. Liu, W. Shen, In-situ synthesis of hydrogen peroxide using water electrolysis and Pd/MWCNTs catalyst, Desal. Water Treat., 179 (2020) 387–395.
  35. S. Zhang, J. Zhang, W. Wang, F. Li, X. Cheng, Removal of phosphate from landscape water using an electrocoagulation process powered directly by photovoltaic solar modules, Sol. Energy Mater. Sol. Cells, 117 (2013) 73–80.
  36. S. Zhang, J. Zhang, X. Cheng, Y. Mei, C. Hu, M. Wang, J. Li, Electrokinetic remediation of soil containing Cr(VI) by photovoltaic solar panels and a DC-DC converter, J. Chem. Technol. Biotechnol., 90 (2015) 693–700.
  37. S. Zhang, X. Yang, Q. Cheng, M. Wang, C. Hu, B. Chai, J. Li, Treatment of wastewater containing nickel by electrocoagulation process using photovoltaic energy, Environ. Eng. Sci., 35 (2018) 484–492.
  38. S. Zhang, X. Yang, X. Cheng, C. Hu, C. Bo, J. Li, Y. Mei, Effect of meteorological conditions on pollutants removal and enhancing approaches during photovoltaic energy direct application: electrokinetic remediation of soil containing Cr(VI) as an example, Int. J. Electrochem. Sci., 11 (2016) 5753–5765.