References
- B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite
and selenate species: effect of EDTA and other process
variables, Environ. Technol. (United Kingdom), 35 (2014)
1091–1100.
- S. Santos, G. Ungureanu, R. Boaventura, C. Botelho, Selenium
contaminated waters: an overview of analytical methods,
treatment options and recent advances in sorption methods,
Sci. Total Environ., 521–522 (2015) 246–260.
- N. Geoffroy, G.P. Demopoulos, The elimination of selenium(IV)
from aqueous solution by precipitation with sodium sulfide,
J. Hazard. Mater., 185 (2011) 148–154.
- V. Nguyen, D. Beydoun, R. Amal, Photocatalytic reduction of
selenite and selenate using TiO2 photo-catalyst, J. Photochem.
Photobiol., A, 171 (2005) 113–120.
- S. Sanuki, K. Shako, S. Nagaoka, H. Majima, Photocatalytic
reduction of Se ions using suspended anatase powders, Mater.
Trans., JIM, 41 (2000) 799–805.
- T. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers
on the photocatalytic reduction of selenium anions, J. Photochem.
Photobiol., A, 159 (2003) 273–280.
- T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag
particles loading on TiO2 photocatalytic reduction of selenate
ions, Chem. Eng. J., 95 (2003) 179–186.
- V.N.H. Nguyen, R. Amal, D. Beydoun, Photocatalytic reduction
of seleniumions using different TiO2 photocatalysts, Chem.
Eng. Sci., 60 (2005) 5759–5769.
- N. Aman, T. Mishra, J. Hait, R. Jana, Simultaneous photoreductive
removal of copper(II) and selenium(IV) under visible
light over spherical binary oxide photocatalyst, J. Hazard.
Mater., 186 (2011) 360–366.
- B.A. Labaran, M.S. Vohra, Solar photocatalytic removal of
selenite, selenate, and selenocyanate species, CLEAN – Soil, Air,
Water, 45 (2017) 1600268, doi: 10.1002/clen.201600268.
- K. Chalastara, F. Guo, G.P. Demopoulos, Hydrolytic Precipitation
of Nanosized TiO2 Phases for Use as Photocatalytic
Sorption Media in Effluent Treatment, Springer International
Publishing, Cham, 2018.
- E. Kikuchi, S. Ito, M. Kobayashi, H. Sakamoto, Reduction and
removal of selenate ion by TiO2 photo-catalyst; Sanka chitan
hikarishokubai ni yoru serensan ion no kangen jokyo, Shigen to
Kankyo, 6 (1997) 71–75.
- E. Kikuchi, H. Sakamoto, Kinetics of the reduction reaction
of selenate ions by TiO2 photocatalyst,
J. Electrochem. Soc.,
147 (2000) 4589–4593.
- T.T. Tan, M. Zaw, D. Beydoun, R. Amal, The formation of
nanosized selenium–titanium dioxide composite semiconductors
by photocatalysis, J. Nanopart. Res., 4 (2002) 541–552.
- T.T. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of
Se(VI) in aqueous solutions in UV/TiO2 system: importance
of optimum ratio of reactants on TiO2 surface, J. Mol. Catal. A:
Chem., 202 (2003) 73–85.
- T.T.Y. Tan, D. Beydoun, R. Amal, Photocatalytic reduction
of Se(VI) in aqueous solutions in UV/TiO2 system: kinetic
modeling and reaction mechanism, J. Phys. Chem. B, 107 (2003)
4296–4303.
- T. Nakajima, H. Takanashi, T. Tominaga, K. Yamada, A. Ohki,
Removal of arsenic and selenium compounds from aqueous
media by using TiO2 photocatalytic reaction, Water Supply,
12 (2012) 24–30.
- M.S. Vohra, Selenocyanate (SeCN–) contaminated wastewater
treatment using TiO2 photocatalysis: SeCN– complex
destruction,intermediates formation, and removal of selenium
species, Fresenius Environ. Bull., 24 (2015) 1108–1118.
- M.S. Vohra, B.A. Labaran, Photocatalytic treatment of mixed
selenocyanate and phenol streams: Process modeling,
optimization, and kinetics, Environ. Prog. Sustainable Energy,
39 (2020) e13401.
- S.A. Ahmed, M.S. Vohra, Treatment of aqueous selenocyanate
(SeCN–) using combined TiO2 photocatalysis and 2-line
ferrihydrite adsorption, Desal. Water Treat., 211 (2021) 267–279.
- J. Novak, C.D. Goldsmith, R.E. Benoit, J.H. O’Brien,
Biodegradation of methanol and tertiary butyl alcohol in
subsurface systems, Water Sci. Technol., 17 (1985) 71–85.
- C.E. Schaefer, Aerobic biodegradation of iso-butanol and
ethanol and their relative effects on BTEX biodegradation in
aquifer materials, Chemosphere, 81 (2010) 1104–1110.
- K. Pugazhendhi, S. D’Almeida, P.N. Kumar, J.S.S. Mary,
T. Tenkyong, D.J. Sharmila, J. Madhavan, J.M. Shyla, Hybrid
TiO2/ZnO and TiO2/Al plasmon impregnated ZnO nanocomposite
photoanodes for DSSCs: synthesis and characterisation,
Mater. Res. Express, 5 (2018) 045053.
- L. Wang, X. Fu, Y. Han, E. Chang, H. Wu, H. Wang, K. Li,
X. Qi, Preparation, characterization, and photocatalytic activity
of TiO2/ZnO nanocomposites, J. Nanomater., 2013 (2013)
321459, doi: 10.1155/2013/321459.
- M. Zamani, M. Rostami, M. Aghajanzadeh, H.K. Manjili,
K. Rostamizadeh, H. Danafa, Mesoporous titanium dioxide@
zinc oxide–graphene oxide nanocarriers for colon-specific
drug delivery, J. Mater. Sci., 53 (2018) 1634–1645.
- X.Q. Wei, Z.G. Zhang, M. Liu, C.S. Chen, G. Sun, C.S. Xue,
H.Z. Zhuang, B.Y. Man, Annealing effect on the microstructure
and photoluminescence of ZnO thin films, Mater. Chem. Phys.,
101 (2007) 285–290.
- S.H. Khan, R. Suriyaprabha, B. Pathak, M.H. Fulekar,
Photocatalytic degradation of organophosphate pesticides
(Chlorpyrifos) using synthesized zinc oxide nanoparticle by
membrane filtration reactor under UV irradiation, Front.
Nanosci. Nanotechnol., 1 (2015) 23–27.
- M. Naimi-Joubani, M. Shirzad-Siboni, J. Yang, M. Gholami,
M. Farzadkia, Photocatalytic reduction of hexavalent chromium
with illuminated ZnO/TiO2 composite, J. Ind. Eng. Chem.,
22 (2015) 317–323.
- I.K.R. Laila, N. Mufti, S. Maryam, A. Fuad, A. Taufiq,
Sunaryono, Synthesis and Characterization of ZnO Nanorods
by Hydrothermal Methods and its Application on Perovskite
Solar Cells, Journal of Physics: Conference Series, The 2017
International Conference on Mathematics, Science, and
Education 29–30 August 2017, Malang, East Java, Indonesia,
2018, p. 012012.
- M.M. Karkare, Choice of precursor not affecting the size of
anatase TiO2 nanoparticles but affecting morphology under
broader view, Int. Nano Lett., 4 (2014) 111, doi: 10.1007/
s40089-014-0111-x.
- B.H. Soni, M.P. Deshpande, S.V. Bhatt, N. Garg, S.H. Chaki,
Studies on ZnO nanorods synthesized by hydrothermal
method and their characterization, J. Nano- Electron. Phys.,
4 (2013) 04077–04078.
- M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Photocatalysis
and Bandgap Engineering Using ZnO Nanocomposites, Adv.
Mater. Sci. Eng., 2015 (2015) 934587, doi: 10.1155/2015/934587.
- A. Iqbal, N.H. Ibrahim, N.R. Abdul Rahman, K.A. Saharudin,
F. Adam, S. Sreekantan, R.M. Yusop, N.F. Jaafar, L.D. Wilson,
ZnO surface doping to enhance the photocatalytic activity of
lithium titanate/TiO2 for Methylene blue photodegradation
under visible light irradiation, Surfaces, 3 (2020) 301–318.
- J. Chen, W. Liao, Y. Jiang, D. Yu, M. Zou, H. Zhu, M. Zhang,
M. Du, Facile fabrication of ZnO/TiO2 heterogeneous
nanofibres and their photocatalytic behaviour and mechanism
towards Rhodamine B, Nanomater. Nanotechnol., 6 (2016) 9,
doi: 10.5772/62291.
- S. Sharmasarkar, G.F. Vance, Selenite–selenate sorption in
surface coal mine environment, Adv. Environ. Res., 7 (2002)
87–95.
- U.I. Gaya, Kinetic Concepts of Heterogeneous Photocatalysis, in:
Heterogeneous Photocatalysis Using Inorganic Semiconductor
Solids, Springer, Netherlands, 2014, pp. 43–71.