References

  1. B.A. Labaran, M.S. Vohra, Photocatalytic removal of selenite and selenate species: effect of EDTA and other process variables, Environ. Technol. (United Kingdom), 35 (2014) 1091–1100.
  2. S. Santos, G. Ungureanu, R. Boaventura, C. Botelho, Selenium contaminated waters: an overview of analytical methods, treatment options and recent advances in sorption methods, Sci. Total Environ., 521–522 (2015) 246–260.
  3. N. Geoffroy, G.P. Demopoulos, The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide, J. Hazard. Mater., 185 (2011) 148–154.
  4. V. Nguyen, D. Beydoun, R. Amal, Photocatalytic reduction of selenite and selenate using TiO2 photo-catalyst, J. Photochem. Photobiol., A, 171 (2005) 113–120.
  5. S. Sanuki, K. Shako, S. Nagaoka, H. Majima, Photocatalytic reduction of Se ions using suspended anatase powders, Mater. Trans., JIM, 41 (2000) 799–805.
  6. T. Tan, D. Beydoun, R. Amal, Effects of organic hole scavengers on the photocatalytic reduction of selenium anions, J. Photochem. Photobiol., A, 159 (2003) 273–280.
  7. T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions, Chem. Eng. J., 95 (2003) 179–186.
  8. V.N.H. Nguyen, R. Amal, D. Beydoun, Photocatalytic reduction of seleniumions using different TiO2 photocatalysts, Chem. Eng. Sci., 60 (2005) 5759–5769.
  9. N. Aman, T. Mishra, J. Hait, R. Jana, Simultaneous photoreductive removal of copper(II) and selenium(IV) under visible light over spherical binary oxide photocatalyst, J. Hazard. Mater., 186 (2011) 360–366.
  10. B.A. Labaran, M.S. Vohra, Solar photocatalytic removal of selenite, selenate, and selenocyanate species, CLEAN – Soil, Air, Water, 45 (2017) 1600268, doi: 10.1002/clen.201600268.
  11. K. Chalastara, F. Guo, G.P. Demopoulos, Hydrolytic Precipitation of Nanosized TiO2 Phases for Use as Photocatalytic Sorption Media in Effluent Treatment, Springer International Publishing, Cham, 2018.
  12. E. Kikuchi, S. Ito, M. Kobayashi, H. Sakamoto, Reduction and removal of selenate ion by TiO2 photo-catalyst; Sanka chitan hikarishokubai ni yoru serensan ion no kangen jokyo, Shigen to Kankyo, 6 (1997) 71–75.
  13. E. Kikuchi, H. Sakamoto, Kinetics of the reduction reaction of selenate ions by TiO2 photocatalyst,
    J. Electrochem. Soc., 147 (2000) 4589–4593.
  14. T.T. Tan, M. Zaw, D. Beydoun, R. Amal, The formation of nanosized selenium–titanium dioxide composite semiconductors by photocatalysis, J. Nanopart. Res., 4 (2002) 541–552.
  15. T.T. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: importance of optimum ratio of reactants on TiO2 surface, J. Mol. Catal. A: Chem., 202 (2003) 73–85.
  16. T.T.Y. Tan, D. Beydoun, R. Amal, Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: kinetic modeling and reaction mechanism, J. Phys. Chem. B, 107 (2003) 4296–4303.
  17. T. Nakajima, H. Takanashi, T. Tominaga, K. Yamada, A. Ohki, Removal of arsenic and selenium compounds from aqueous media by using TiO2 photocatalytic reaction, Water Supply, 12 (2012) 24–30.
  18. M.S. Vohra, Selenocyanate (SeCN) contaminated wastewater treatment using TiO2 photocatalysis: SeCN complex destruction,intermediates formation, and removal of selenium species, Fresenius Environ. Bull., 24 (2015) 1108–1118.
  19. M.S. Vohra, B.A. Labaran, Photocatalytic treatment of mixed selenocyanate and phenol streams: Process modeling, optimization, and kinetics, Environ. Prog. Sustainable Energy, 39 (2020) e13401.
  20. S.A. Ahmed, M.S. Vohra, Treatment of aqueous selenocyanate (SeCN) using combined TiO2 photocatalysis and 2-line ferrihydrite adsorption, Desal. Water Treat., 211 (2021) 267–279.
  21. J. Novak, C.D. Goldsmith, R.E. Benoit, J.H. O’Brien, Biodegradation of methanol and tertiary butyl alcohol in subsurface systems, Water Sci. Technol., 17 (1985) 71–85.
  22. C.E. Schaefer, Aerobic biodegradation of iso-butanol and ethanol and their relative effects on BTEX biodegradation in aquifer materials, Chemosphere, 81 (2010) 1104–1110.
  23. K. Pugazhendhi, S. D’Almeida, P.N. Kumar, J.S.S. Mary, T. Tenkyong, D.J. Sharmila, J. Madhavan, J.M. Shyla, Hybrid TiO2/ZnO and TiO2/Al plasmon impregnated ZnO nanocomposite photoanodes for DSSCs: synthesis and characterisation, Mater. Res. Express, 5 (2018) 045053.
  24. L. Wang, X. Fu, Y. Han, E. Chang, H. Wu, H. Wang, K. Li, X. Qi, Preparation, characterization, and photocatalytic activity of TiO2/ZnO nanocomposites, J. Nanomater., 2013 (2013) 321459, doi: 10.1155/2013/321459.
  25. M. Zamani, M. Rostami, M. Aghajanzadeh, H.K. Manjili, K. Rostamizadeh, H. Danafa, Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery, J. Mater. Sci., 53 (2018) 1634–1645.
  26. X.Q. Wei, Z.G. Zhang, M. Liu, C.S. Chen, G. Sun, C.S. Xue, H.Z. Zhuang, B.Y. Man, Annealing effect on the microstructure and photoluminescence of ZnO thin films, Mater. Chem. Phys., 101 (2007) 285–290.
  27. S.H. Khan, R. Suriyaprabha, B. Pathak, M.H. Fulekar, Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation, Front. Nanosci. Nanotechnol., 1 (2015) 23–27.
  28. M. Naimi-Joubani, M. Shirzad-Siboni, J. Yang, M. Gholami, M. Farzadkia, Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite, J. Ind. Eng. Chem., 22 (2015) 317–323.
  29. I.K.R. Laila, N. Mufti, S. Maryam, A. Fuad, A. Taufiq, Sunaryono, Synthesis and Characterization of ZnO Nanorods by Hydrothermal Methods and its Application on Perovskite Solar Cells, Journal of Physics: Conference Series, The 2017 International Conference on Mathematics, Science, and Education 29–30 August 2017, Malang, East Java, Indonesia, 2018, p. 012012.
  30. M.M. Karkare, Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view, Int. Nano Lett., 4 (2014) 111, doi: 10.1007/ s40089-014-0111-x.
  31. B.H. Soni, M.P. Deshpande, S.V. Bhatt, N. Garg, S.H. Chaki, Studies on ZnO nanorods synthesized by hydrothermal method and their characterization, J. Nano- Electron. Phys., 4 (2013) 04077–04078.
  32. M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites, Adv. Mater. Sci. Eng., 2015 (2015) 934587, doi: 10.1155/2015/934587.
  33. A. Iqbal, N.H. Ibrahim, N.R. Abdul Rahman, K.A. Saharudin, F. Adam, S. Sreekantan, R.M. Yusop, N.F. Jaafar, L.D. Wilson, ZnO surface doping to enhance the photocatalytic activity of lithium titanate/TiO2 for Methylene blue photodegradation under visible light irradiation, Surfaces, 3 (2020) 301–318.
  34. J. Chen, W. Liao, Y. Jiang, D. Yu, M. Zou, H. Zhu, M. Zhang, M. Du, Facile fabrication of ZnO/TiO2 heterogeneous nanofibres and their photocatalytic behaviour and mechanism towards Rhodamine B, Nanomater. Nanotechnol., 6 (2016) 9, doi: 10.5772/62291.
  35. S. Sharmasarkar, G.F. Vance, Selenite–selenate sorption in surface coal mine environment, Adv. Environ. Res., 7 (2002) 87–95.
  36. U.I. Gaya, Kinetic Concepts of Heterogeneous Photocatalysis, in: Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, Springer, Netherlands, 2014, pp. 43–71.