References

  1. C.C. Zimmerer, V. Kottke, Effects of spacer geometry on pressure drop, mass transfer, mixing behavior, and residence time distribution, Desalination, 104 (1996) 129–134.
  2. G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination, 64 (1987) 339–352.
  3. A.R. da Costa, A.G. Fane, Net-type spacers: effect of configuration on fluid flow path and ultrafiltration flux, Ind. Eng. Chem. Res., 33 (1994) 1845–1851.
  4. O. Kavianipour, G.D. Ingram, H.B. Vuthaluru, Studies into the mass transfer and energy consumption of commercial feed spacers for RO membrane modules using CFD: effectiveness of performance measures, Chem. Eng. Res. Des., 141 (2019) 328–338.
  5. F. Li, W. Meindersma, A.B. de Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci., 208 (2002) 289–302.
  6. N. Sreedhar, N. Thomas, O. Al-Ketan, R. Rowshan, H. Hernandez, R.K. Abu Al-Rub, H.A. Arafat, 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF, Desalination, 425 (2018) 12–21.
  7. A.R. Da Costa; A.G. Fane; D.E. Wiley, Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87 (1994) 79–98.
  8. A.R. Da Costa, A.G. Fane, C.J.D. Fell, A.C.M. Franken, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62 (1991) 275–291.
  9. D.G. Thomas, Forced convection mass transfer in hyperfiltration at high fluxes, Ind. Eng. Chem. Fundam., 12 (1973) 396–405.
  10. A.H. Haidari, S.G.J. Heijman, W.G.J. van der Meer, Visualization of hydraulic conditions inside the feed channel of reverse osmosis: a practical comparison of velocity between empty and spacer-filled channel, Water Res., 106 (2016) 232–241.
  11. O. Kavianipour, G.D. Ingram, H.B. Vuthaluru, Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using computational fluid dynamics, J. Membr. Sci., 526 (2017) 156–171.
  12. S. Kerdi, A. Qamar, J.S. Vrouwenvelder, N. Ghaffour, Fouling resilient perforated feed spacers for membrane filtration, Water Res., 140 (2018) 211–219.
  13. J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers: review and analysis, J. Membr. Sci., 242 (2004) 129–153.
  14. A. Ruiz-García, I. de la N. Pestana, Feed spacer geometries and permeability coefficients. Effect on the performance in BWRO spiral-wound membrane modules, Water, 11 (2019) 152, doi: 10.3390/w11010152.
  15. A.H. Haidari, S.G.J. Heijman, W.G.J. van der Meer, Optimal design of spacers in reverse osmosis, Sep. Purif. Technol., 192 (2018) 441–456.
  16. J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of the flow around spacer filaments between channel walls.
    2. Mass-transfer enhancement, Ind. Eng. Chem. Res., 41 (2002) 4879–4888.
  17. J. Fárková, The pressure drop in membrane module with spacers, J. Membr. Sci., 64 (1991) 103–111.
  18. Q. She, D. Hou, J. Liu, K. Hai, C.Y. Tang, Effect of feed spacer induced membrane deformation on the performance of pressure retarded osmosis (PRO): implications for PRO process operation, J. Membr. Sci., 445 (2013) 170–182.
  19. A. Sagiv, W. Xu, P.D. Christo, Y. Cohen, R. Semiat, Evaluation of osmotic energy extraction via FEM modeling and exploration of PRO operational parameter space, Desalination, 401 (2017) 120–133.
  20. J. Maisonneuve, P. Pillay, C.B. Laflamme, Pressure-retarded osmotic power system model considering non-ideal effects, Renewable Energy, 75 (2015) 416–424.
  21. Y. Roy, M.H. Sharqawy, J.H. Lienhard V, Modeling of flatsheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration, J. Membr. Sci., 493 (2015) 360–372.
  22. B. Abdelkader, M.H. Sharqawy, Temperature effects and entropy generation of pressure retarded osmosis process, Entropy, 21 (2019) 1158, doi: 10.3390/e21121158.
  23. C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, A numerical and experimental study of mass transfer
    in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number, J. Membr. Sci., 326 (2009) 234–251.
  24. B. Gu, C.S. Adjiman, X.Y. Xu, The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations, J. Membr. Sci., 527 (2017) 78–91.
  25. V. Geraldes, V. Semião, M.N. De Pinho, Flow management in nanofiltration spiral wound modules
    with ladder-type spacers, J. Membr. Sci., 203 (2002) 87–102.
  26. J.L.C. Santos, V. Geraldes, S. Velizarov, J.G. Crespo, Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD),
    J. Membr. Sci., 305 (2007) 103–117.
  27. G.A. Fimbres-Weihs, D.E. Wiley, Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules, Chem. Eng. Process. Process Intensif., 49 (2010) 759–781.
  28. C.P. Koutsou, A.J. Karabelas, Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers, J. Membr. Sci., 399–400 (2012) 60–72.
  29. M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels, J. Membr. Sci., 326 (2009) 270–284.
  30. K.Y. Toh, Y.Y. Liang, W.J. Lau, D.F. Fletcher, CFD study of the effect of perforated spacer on pressure loss and mass transfer in spacer-filled membrane channels, Chem. Eng. Sci., 222 (2020) 115704, doi: 10.1016/j.ces.2020.115704.
  31. G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of twodimensional multi-layer spacer designs for minimum drag and maximum mass transfer, J. Membr. Sci., 325 (2008) 809–822.
  32. R.E. Ahmad, A.H. Earle, P. Hugues, R. Maharaj, Landslide damage to the Boar River water supply pipeline, Bromley Hill, Jamaica: case study of a landslide caused by Hurricane Gilbert (1988), Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31 (2006) A46.
  33. S. Wardeh, H.P. Morvan, CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination, Chem. Eng. Res. Des., 86 (2008) 1107–1116.
  34. J. Schwinge, D.E. Wiley, D.F. Fletcher, A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules, Desalination, 146 (2002) 195–201.
  35. A.L. Ahmad, K.K. Lau, M.Z. Abu Bakar, Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel, J. Membr. Sci., 262 (2005) 138–152.
  36. V.V. Ranade, A. Kumar, Fluid dynamics of spacer filled rectangular and curvilinear channels, J. Membr. Sci., 271 (2006) 1–15.
  37. A. Saeed, R. Vuthaluru, Y. Yang, H.B. Vuthaluru, Effect of feed spacer arrangement on flow dynamics through spacer filled membranes, Desalination, 285 (2012) 163–169.
  38. C. Picioreanu, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices, J. Membr. Sci., 345 (2009) 340–354.
  39. Y.L. Li, K.L. Tung, CFD simulation of fluid flow through spacerfilled membrane module: selecting suitable cell types for periodic boundary conditions, Desalination, 233 (2008) 351–358.
  40. Y.L. Li, K.L. Tung, M.Y. Lu, S.H. Huang, Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module, J. Membr. Sci., 329 (2009) 106–118.
  41. J.S. Vrouwenvelder, C. Picioreanu, J.C. Kruithof, M.C.M. van Loosdrecht, Biofouling in spiral wound membrane systems: three-dimensional CFD model based evaluation of experimental data, J. Membr. Sci., 346 (2010) 71–85.
  42. I. El Mokhtar, L. Gurreri, A. Tamburini, A. Cipollina, M. Ciofalo, T. Bouguecha, G. Micale, CFD prediction of flow, heat and mass transfer in woven spacer-filled channels for membrane processes, Int. J. Heat Mass Transfer, 173 (2021) 121246, doi: 10.1016/j.ijheatmasstransfer.2021.121246.
  43. S. Muztuza, Y. Kim, A. Qamar, G. Naidu, S. Phuntsho, N. Ghaffour, J.S. Vrouwenvelder, H. Kyong, Dynamic feed spacer for fouling minimization in forward osmosis process, Desalination, 515 (2021) 115198, doi:10.1016/j.desal.2021. 115198.
  44. H.S. Abid, D.J. Johnsona, R. Hashaikeh, N. Hilal, A review of efforts to reduce membrane fouling by control of feed spacer characteristics, Desalination, 420 (2017) 384–402.
  45. A. Siddiqui, S. Lehmann, V. Haaksman, J. Ogier, C. Schellenberg, M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Porosity of spacer-filled channels in spiral-wound membrane systems: quantification methods and impact on hydraulic characterization, Water Res., 119 (2017) 304–311.
  46. C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, Direct numerical simulation of flow in spacer-filled channels: effect of spacer geometrical characteristics, J. Membr. Sci., 291 (2007) 53–69.
  47. B. Gu, C.S. Adjiman, X.Y. Xu, Correlations for concentration polarization and pressure drop in spacer-filled RO membrane modules based on CFD simulations, Membranes, 11 (2021) 338, doi:10.3390/membranes11050338.
  48. Y.Y. Liang, K.Y. Toh, G.A. Fimbres Weihs, 3D CFD study of the effect of multi-layer spacers on membrane performance under steady flow, J. Membr. Sci., 580 (2019) 256–267.
  49. P.C. Carman, Fluid flow through granular beds, Trans. Int. Chem. Eng., 15 (1937) 150–166.
  50. T.G. Gutowski, T. Morigaki, Z. Cai., The consolidation of laminate composites, J. Compos. Mater., 21 (1987) 172–188.
  51. W.E. Ranz, The Role of Particle Diffusion and Interception in Aerosols Filtration, Vol. 1009, University of Illinois, Engineering Experiment Station, 1953.
  52. B.R. Gebart, Permeability of unidirectional reinforcements for RTM, J. Compos. Mater., 26 (1992) 1100–1133.
  53. C.Y. Chen, Filtration of aerosols by fibrous media, Chem. Rev., 55 (1955) 595–623.
  54. D.A. Nield, A. Bejan, Convection in Porous Media, 5th ed., New York, Springer, 2017.
  55. S.S. Bucs, R. Valladares Linares, J.O. Marston, A.I. Radu, J.S. Vrouwenvelder, C. Picioreanu, Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes, Water Res., 87 (2015) 299–310.
  56. Z. Zeng, R. Grigg, A criterion for non-Darcy flow in porous media, Trans. Porous Media, 63 (2006) 57–69.
  57. J.C. Ward, Turbulent flow in porous media, J. Hydraul. Div., 90 (1964) 1–12.