References
- C.C. Zimmerer, V. Kottke, Effects of spacer geometry on
pressure drop, mass transfer, mixing behavior, and residence
time distribution, Desalination, 104 (1996) 129–134.
- G. Schock, A. Miquel, Mass transfer and pressure loss in spiral
wound modules, Desalination, 64 (1987) 339–352.
- A.R. da Costa, A.G. Fane, Net-type spacers: effect of
configuration on fluid flow path and ultrafiltration flux,
Ind. Eng. Chem. Res., 33 (1994) 1845–1851.
- O. Kavianipour, G.D. Ingram, H.B. Vuthaluru, Studies into the
mass transfer and energy consumption of commercial feed
spacers for RO membrane modules using CFD: effectiveness
of performance measures, Chem. Eng. Res. Des., 141 (2019)
328–338.
- F. Li, W. Meindersma, A.B. de Haan, T. Reith, Optimization of
commercial net spacers in spiral wound membrane modules,
J. Membr. Sci., 208 (2002) 289–302.
- N. Sreedhar, N. Thomas, O. Al-Ketan, R. Rowshan,
H. Hernandez, R.K. Abu Al-Rub, H.A. Arafat, 3D printed
feed spacers based on triply periodic minimal surfaces for
flux enhancement and biofouling mitigation in RO and UF,
Desalination, 425 (2018) 12–21.
- A.R. Da Costa; A.G. Fane; D.E. Wiley, Spacer characterization
and pressure drop modelling in spacer-filled channels for
ultrafiltration, J. Membr. Sci., 87 (1994) 79–98.
- A.R. Da Costa, A.G. Fane, C.J.D. Fell, A.C.M. Franken, Optimal
channel spacer design for ultrafiltration, J. Membr. Sci.,
62 (1991) 275–291.
- D.G. Thomas, Forced convection mass transfer in hyperfiltration
at high fluxes, Ind. Eng. Chem. Fundam., 12 (1973)
396–405.
- A.H. Haidari, S.G.J. Heijman, W.G.J. van der Meer, Visualization
of hydraulic conditions inside the feed channel of reverse
osmosis: a practical comparison of velocity between empty
and spacer-filled channel, Water Res., 106 (2016) 232–241.
- O. Kavianipour, G.D. Ingram, H.B. Vuthaluru, Investigation
into the effectiveness of feed spacer configurations for reverse
osmosis membrane modules using computational fluid
dynamics, J. Membr. Sci., 526 (2017) 156–171.
- S. Kerdi, A. Qamar, J.S. Vrouwenvelder, N. Ghaffour, Fouling
resilient perforated feed spacers for membrane filtration, Water
Res., 140 (2018) 211–219.
- J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane,
Spiral wound modules and spacers: review and analysis,
J. Membr. Sci., 242 (2004) 129–153.
- A. Ruiz-García, I. de la N. Pestana, Feed spacer geometries
and permeability coefficients. Effect on the performance in
BWRO spiral-wound membrane modules, Water, 11 (2019) 152,
doi: 10.3390/w11010152.
- A.H. Haidari, S.G.J. Heijman, W.G.J. van der Meer, Optimal
design of spacers in reverse osmosis, Sep. Purif. Technol.,
192 (2018) 441–456.
- J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of the flow
around spacer filaments between channel walls.
2. Mass-transfer
enhancement, Ind. Eng. Chem. Res., 41 (2002) 4879–4888.
- J. Fárková, The pressure drop in membrane module with
spacers, J. Membr. Sci., 64 (1991) 103–111.
- Q. She, D. Hou, J. Liu, K. Hai, C.Y. Tang, Effect of feed spacer
induced membrane deformation on the performance of
pressure retarded osmosis (PRO): implications for PRO process
operation, J. Membr. Sci., 445 (2013) 170–182.
- A. Sagiv, W. Xu, P.D. Christo, Y. Cohen, R. Semiat, Evaluation of
osmotic energy extraction via FEM modeling and exploration
of PRO operational parameter space, Desalination, 401 (2017)
120–133.
- J. Maisonneuve, P. Pillay, C.B. Laflamme, Pressure-retarded
osmotic power system model considering non-ideal effects,
Renewable Energy, 75 (2015) 416–424.
- Y. Roy, M.H. Sharqawy, J.H. Lienhard V, Modeling of flatsheet
and spiral-wound nanofiltration configurations and its
application in seawater nanofiltration, J. Membr. Sci., 493 (2015)
360–372.
- B. Abdelkader, M.H. Sharqawy, Temperature effects and
entropy generation of pressure retarded osmosis process,
Entropy, 21 (2019) 1158, doi: 10.3390/e21121158.
- C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, A numerical and
experimental study of mass transfer
in spacer-filled channels:
Effects of spacer geometrical characteristics and Schmidt
number, J. Membr. Sci., 326 (2009) 234–251.
- B. Gu, C.S. Adjiman, X.Y. Xu, The effect of feed spacer geometry
on membrane performance and concentration polarisation
based on 3D CFD simulations, J. Membr. Sci., 527 (2017) 78–91.
- V. Geraldes, V. Semião, M.N. De Pinho, Flow management in
nanofiltration spiral wound modules
with ladder-type spacers,
J. Membr. Sci., 203 (2002) 87–102.
- J.L.C. Santos, V. Geraldes, S. Velizarov, J.G. Crespo, Investigation
of flow patterns and mass transfer in membrane module
channels filled with flow-aligned spacers using computational
fluid dynamics (CFD),
J. Membr. Sci., 305 (2007) 103–117.
- G.A. Fimbres-Weihs, D.E. Wiley, Review of 3D CFD modeling
of flow and mass transfer in narrow spacer-filled channels in
membrane modules, Chem. Eng. Process. Process Intensif.,
49 (2010) 759–781.
- C.P. Koutsou, A.J. Karabelas, Shear stresses and mass transfer at
the base of a stirred filtration cell and corresponding conditions
in narrow channels with spacers, J. Membr. Sci., 399–400 (2012)
60–72.
- M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for
flow and mass transfer in spacer-obstructed membrane feed
channels, J. Membr. Sci., 326 (2009) 270–284.
- K.Y. Toh, Y.Y. Liang, W.J. Lau, D.F. Fletcher, CFD study of the
effect of perforated spacer on pressure loss and mass transfer
in spacer-filled membrane channels, Chem. Eng. Sci., 222 (2020)
115704, doi: 10.1016/j.ces.2020.115704.
- G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of twodimensional
multi-layer spacer designs for minimum drag
and maximum mass transfer, J. Membr. Sci., 325 (2008) 809–822.
- R.E. Ahmad, A.H. Earle, P. Hugues, R. Maharaj, Landslide
damage to the Boar River water supply pipeline, Bromley Hill,
Jamaica: case study of a landslide caused by Hurricane Gilbert
(1988), Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31 (2006)
A46.
- S. Wardeh, H.P. Morvan, CFD simulations of flow and
concentration polarization in spacer-filled channels for
application to water desalination, Chem. Eng. Res. Des.,
86 (2008) 1107–1116.
- J. Schwinge, D.E. Wiley, D.F. Fletcher, A CFD study of unsteady
flow in narrow spacer-filled channels for spiral-wound
membrane modules, Desalination, 146 (2002) 195–201.
- A.L. Ahmad, K.K. Lau, M.Z. Abu Bakar, Impact of different
spacer filament geometries on concentration polarization
control in narrow membrane channel, J. Membr. Sci., 262 (2005)
138–152.
- V.V. Ranade, A. Kumar, Fluid dynamics of spacer filled
rectangular and curvilinear channels, J. Membr. Sci., 271 (2006)
1–15.
- A. Saeed, R. Vuthaluru, Y. Yang, H.B. Vuthaluru, Effect of feed
spacer arrangement on flow dynamics through spacer filled
membranes, Desalination, 285 (2012) 163–169.
- C. Picioreanu, J.S. Vrouwenvelder, M.C.M. van Loosdrecht,
Three-dimensional modeling of biofouling and fluid dynamics
in feed spacer channels of membrane devices, J. Membr. Sci.,
345 (2009) 340–354.
- Y.L. Li, K.L. Tung, CFD simulation of fluid flow through spacerfilled
membrane module: selecting suitable cell types for
periodic boundary conditions, Desalination, 233 (2008) 351–358.
- Y.L. Li, K.L. Tung, M.Y. Lu, S.H. Huang, Mitigating the
curvature effect of the spacer-filled channel in a spiral-wound
membrane module, J. Membr. Sci., 329 (2009) 106–118.
- J.S. Vrouwenvelder, C. Picioreanu, J.C. Kruithof, M.C.M. van
Loosdrecht, Biofouling in spiral wound membrane systems:
three-dimensional CFD model based evaluation of experimental
data, J. Membr. Sci., 346 (2010) 71–85.
- I. El Mokhtar, L. Gurreri, A. Tamburini, A. Cipollina, M. Ciofalo,
T. Bouguecha, G. Micale, CFD prediction of flow, heat and
mass transfer in woven spacer-filled channels for membrane
processes, Int. J. Heat Mass Transfer, 173 (2021) 121246,
doi: 10.1016/j.ijheatmasstransfer.2021.121246.
- S. Muztuza, Y. Kim, A. Qamar, G. Naidu, S. Phuntsho,
N. Ghaffour, J.S. Vrouwenvelder, H. Kyong, Dynamic feed
spacer for fouling minimization in forward osmosis process,
Desalination, 515 (2021) 115198, doi:10.1016/j.desal.2021.
115198.
- H.S. Abid, D.J. Johnsona, R. Hashaikeh, N. Hilal, A review of
efforts to reduce membrane fouling by control of feed spacer
characteristics, Desalination, 420 (2017) 384–402.
- A. Siddiqui, S. Lehmann, V. Haaksman, J. Ogier, C. Schellenberg,
M.C.M. van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder,
Porosity of spacer-filled channels in spiral-wound membrane
systems: quantification methods and impact on hydraulic
characterization, Water Res., 119 (2017) 304–311.
- C.P. Koutsou, S.G. Yiantsios, A.J. Karabelas, Direct numerical
simulation of flow in spacer-filled channels: effect of spacer
geometrical characteristics, J. Membr. Sci., 291 (2007) 53–69.
- B. Gu, C.S. Adjiman, X.Y. Xu, Correlations for concentration
polarization and pressure drop in spacer-filled RO membrane
modules based on CFD simulations, Membranes, 11 (2021) 338,
doi:10.3390/membranes11050338.
- Y.Y. Liang, K.Y. Toh, G.A. Fimbres Weihs, 3D CFD study of
the effect of multi-layer spacers on membrane performance
under steady flow, J. Membr. Sci., 580 (2019) 256–267.
- P.C. Carman, Fluid flow through granular beds, Trans. Int.
Chem. Eng., 15 (1937) 150–166.
- T.G. Gutowski, T. Morigaki, Z. Cai., The consolidation of
laminate composites, J. Compos. Mater., 21 (1987) 172–188.
- W.E. Ranz, The Role of Particle Diffusion and Interception in
Aerosols Filtration, Vol. 1009, University of Illinois, Engineering
Experiment Station, 1953.
- B.R. Gebart, Permeability of unidirectional reinforcements
for RTM, J. Compos. Mater., 26 (1992) 1100–1133.
- C.Y. Chen, Filtration of aerosols by fibrous media, Chem.
Rev., 55 (1955) 595–623.
- D.A. Nield, A. Bejan, Convection in Porous Media, 5th ed.,
New York, Springer, 2017.
- S.S. Bucs, R. Valladares Linares, J.O. Marston, A.I. Radu,
J.S. Vrouwenvelder, C. Picioreanu, Experimental and numerical
characterization of the water flow in spacer-filled channels
of spiral-wound membranes, Water Res., 87 (2015) 299–310.
- Z. Zeng, R. Grigg, A criterion for non-Darcy flow in porous
media, Trans. Porous Media, 63 (2006) 57–69.
- J.C. Ward, Turbulent flow in porous media, J. Hydraul. Div.,
90 (1964) 1–12.