References

  1. H.-C. Flemming, Reverse osmosis membrane biofouling, Exp. Therm. Fluid Sci., 14 (1997) 382–391.
  2. H.-C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol., 8 (2010) 623–633.
  3. R. Valladares Linares, L. Fortunato, N.M. Farhat, S.S. Bucs, M. Staal, E.O. Fridjonsson, M.L. Johns, J.S. Vrouwenvelder, T. Leiknes, Mini-review: novel non-destructive in situ biofilm characterization techniques in membrane systems, Desal. Water Treat., 57 (2016) 22894–22901.
  4. L.N. Sim, T.H. Chong, A.H. Taheri, S.T.V. Sim, L. Lai, W.B. Krantz, A.G. Fane, A review of fouling indices and monitoring techniques for reverse osmosis, Desalination, 434 (2018) 169–188.
  5. W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling, Bioresour. Technol., 122 (2012) 27–34.
  6. T. Nguyen, F. Roddick, L. Fan, T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures, Membranes (Basel), 2 (2012) 804–840.
  7. R.A. Al-Juboori, T. Yusaf, Biofouling in RO system: mechanisms, monitoring and controlling, Desalination, 302 (2012) 1–23.
  8. H. Maddah, A. Chogle, Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation, Appl. Water Sci., 7 (2017) 2637–2651.
  9. X. Du, Y. Shi, V. Jegatheesan, I.U. Haq, A review on the mechanism, impacts and control methods of membrane fouling in MBR system, Membranes (Basel), 10 (2020) 24, doi: 10.3390/membranes10020024.
  10. Y. Chun, D. Mulcahy, L. Zou, I.S. Kim, A short review of membrane fouling in forward osmosis processes, Membranes (Basel), 7 (2017) 30, doi: 10.3390/membranes7020030.
  11. W. Chen, C. Qian, K.-G. Zhou, H.-Q. Yu, Molecular spectroscopic characterization of membrane fouling: a critical review, Chem, 4 (2018) 1492–1509.
  12. F. Saffarimiandoab, B. Yavuzturk Gul, R. Sengur Tasdemir, S. Erkoc Ilter, S. Unal, B. Tunaboylu, Y.Z. Menceloglu, I. Koyuncu, A review on membrane fouling: membrane modification, Desal. Water Treat., 216 (2021) 47–70.
  13. H.-C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice, S. Kjelleberg, Biofilms: an emergent form of bacterial life, Nat. Rev. Microbiol., 14 (2016) 563–575.
  14. B. Bhushan, Bio- and Inorganic Fouling, Springer, Cham, 2016, pp. 423–456.
  15. R. Gubner, I.B. Beech, The effect of extracellular polymeric substances on the attachment of Pseudomonas NCIMB 2021 to AISI 304 and 316 stainless steel, Biofouling, 15 (2000) 25–36.
  16. S.R. Suwarno, S. Hanada, T.H. Chong, S. Goto, M. Henmi, A.G. Fane, The effect of different surface conditioning layers on bacterial adhesion on reverse osmosis membranes, Desalination, 387 (2016) 1–13.
  17. Z. Adamczyk, P. Weroński, Application of the DLVO theory for particle deposition problems, Adv. Colloid Interface Sci., 83 (1999) 137–226.
  18. M.C.M. van Loosdrecht, A.J.B. Zehnder, Energetics of bacterial adhesion, Experientia, 46 (1990) 817–822.
  19. H.H.M. Rijnaarts, W. Norde, E.J. Bouwer, J. Lyklema, A.J.B. Zehnder, Reversibility and mechanism of bacterial adhesion, Colloids Surf., B, 4 (1995) 5–22.
  20. S. Ishii, S. Miyata, Y. Hotta, K. Yamamoto, H. Unno, K. Hori, Formation of filamentous appendages by Acinetobacter sp. Tol 5 for adhering to solid surfaces, J. Biosci. Bioeng., 105 (2008) 20–25.
  21. S. Ishii, H. Unno, S. Miyata, K. Hori, Effect of cell appendages on the adhesion properties of a highly adhesive bacterium, Acinetobacter sp. Tol 5, Biosci. Biotechnol. Biochem., 70 (2006) 2635–2640.
  22. S. Ishii, J. Koki, H. Unno, K. Hori, Two morphological types of cell appendages on a strongly adhesive bacterium, Acinetobacter sp. strain Tol 5, Appl. Environ. Microbiol., 70 (2004) 5026–5029.
  23. L. Hall-Stoodley, P. Stoodley, Developmental regulation of microbial biofilms, Curr. Opin. Biotechnol., 13 (2002) 228–233.
  24. M. Herzberg, S. Kang, M. Elimelech, Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes, Environ. Sci. Technol., 43 (2009) 4393–4398.
  25. C. Leroy, C. Delbarre, F. Ghillebaert, C. Compere, D. Combes, Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers, J. Appl. Microbiol., 105 (2008) 791–799.
  26. J. Wingender, T.R. Neu, H.-C. Flemming, Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, J. Wingender, T.R. Neu, H.-C. Flemming, Eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 1–19.
  27. R.D. Prescott, A.W. Decho, Flexibility and adaptability of quorum sensing in nature, Trends Microbiol., 28 (2020) 436–444.
  28. M.F. Siddiqui, M. Rzechowicz, W. Harvey, A.W. Zularisam, G.F. Anthony, Quorum sensing based membrane biofouling control for water treatment: a review, J. Water Process Eng., 7 (2015) 112–122.
  29. P. Chen, L. Cui, K. Zhang, Surface-enhanced Raman spectroscopy monitoring the development of dual-species biofouling on membrane surfaces, J. Membr. Sci., 473 (2015) 36–44.
  30. M. Klausen, A. Heydorn, P. Ragas, L. Lambertsen, A. Aaes- Jørgensen, S. Molin, T. Tolker-Nielsen, Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants, Mol. Microbiol., 48 (2003) 1511–1524.
  31. T. Joo-Hwa, L. Yu, Metabolic response of biofilm to shear stress in fixed‐film culture, J. Appl. Microbiol., 90 (2001) 337–342.
  32. E. Poorasgari, T.V. Bugge, M.L. Christensen, M.K. Jørgensen, Compressibility of fouling layers in membrane bioreactors, J. Membr. Sci., 475 (2015) 65–70.
  33. S.S. Bucs, A.I. Radu, V. Lavric, J.S. Vrouwenvelder, C. Picioreanu, Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: a numerical study, Desalination, 343 (2014) 26–37.
  34. R. Valladares Linares, S.S. Bucs, Z. Li, M. AbuGhdeeb, G. Amy, J.S. Vrouwenvelder, Impact of spacer thickness on biofouling in forward osmosis, Water Res., 57 (2014) 223–233.
  35. J. Chen, M. Zhang, A. Wang, H. Lin, H. Hong, X. Lu, Osmotic pressure effect on membrane fouling in a submerged anaerobic membrane bioreactor and its experimental verification, Bioresour. Technol., 125 (2012) 97–101.
  36. M. Herzberg, M. Elimelech, Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure, J. Membr. Sci., 295 (2007) 11–20.
  37. J. Su, S. Zhang, M.M. Ling, T.S. Chung, Forward osmosis: an emerging technology for sustainable supply of clean water, Clean Technol. Environ. Policy, 14 (2012) 507–511.
  38. K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1–25.
  39. S.E. Kwan, E. Bar-Zeev, M. Elimelech, Biofouling in forward osmosis and reverse osmosis: measurements and mechanisms, J. Membr. Sci., 493 (2015) 703–708.
  40. W.A. Phillip, J.S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44 (2010) 5170–5176.
  41. M. Gryta, The assessment of microorganism growth in the membrane distillation system, Desalination, 142 (2002) 79–88.
  42. A. Bogler, E. Bar-Zeev, Membrane distillation biofouling: impact of feedwater temperature on biofilm characteristics and membrane performance, Environ. Sci. Technol., 52 (2018) 10019–10029.
  43. Y. Miura, Y. Watanabe, S. Okabe, Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: impact of biofilm formation, Environ. Sci. Technol., 41 (2007) 632–638.
  44. R. Xu, W. Qin, B. Zhang, X. Wang, T. Li, Y. Zhang, X. Wen, Nanofiltration in pilot scale for wastewater reclamation: longterm performance and membrane biofouling characteristics, Chem. Eng. J., 395 (2020) 125087, doi: 10.1016/j.cej.2020.125087.
  45. J.S. Vrouwenvelder, D. van der Kooij, Diagnosis, prediction and prevention of biofouling of NF and RO membranes, Desalination, 139 (2001) 65–71.
  46. H.F. Ridgway, H.C. Flemming, Microbial Adhesion and Biofouling of Reverse Osmosis Membranes, Reverse Osmosis Technol., Marcel Dekker, New York, 1988, pp. 429–481.
  47. A.H. Rose, History and scientific basis of microbial biodeterioration of materials, Econ. Microbiol., 6 (1981) 1–18.
  48. T. Wilson, Optical sectioning in confocal fluorescent microscopes, J. Microsc., 154 (1989) 143–156.
  49. P. Stiefel, S. Schmidt-Emrich, K. Maniura-Weber, Q. Ren, Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide, BMC Microbiol., 15 (2015) 36, doi: 10.1186/s12866-015-0376-x.
  50. V.E. Centonze, J.G. White, Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging, Biophys. J., 75 (1998) 2015–2024.
  51. A. Schönle, S.W. Hell, Heating by absorption in the focus of an objective lens, Opt. Lett., 23 (1998) 325–327.
  52. J.M. Squirrell, D.L. Wokosin, J.G. White, B.D. Bavister, Longterm two-photon fluorescence imaging of mammalian embryos without compromising viability, Nat. Biotechnol., 17 (1999) 763–767.
  53. D.J. Hughes, U.K. Tirlapur, R. Field, Z. Cui, In situ 3D characterization of membrane fouling by yeast suspensions using two-photon femtosecond near infrared non-linear optical imaging, J. Membr. Sci., 280 (2006) 124–133.
  54. E.C. Jensen, Types of imaging, Part 2: an overview of fluorescence microscopy, Anat. Rec. Adv. Integr. Anat. Evol. Biol., 295 (2012) 1621–1627.
  55. H. Li, A.G. Fane, H.G.L. Coster, S. Vigneswaran, Direct observation of particle deposition on the membrane surface during crossflow microfiltration, J. Membr. Sci., 149 (1998) 83–97.
  56. M. Wagner, H. Horn, Optical coherence tomography in biofilm research: a comprehensive review, Biotechnol. Bioeng., 114 (2017) 1386–1402.
  57. F.J. Doucet, L. Maguire, J.R. Lead, Size fractionation of aquatic colloids and particles by cross-flow filtration: analysis by scanning electron and atomic force microscopy, Anal. Chim. Acta, 522 (2004) 59–71.
  58. F. Saffarimiandoab, B. Yavuzturk Gul, S. Erkoc-Ilter, S. Guclu, S. Unal, B. Tunaboylu, Y.Z. Menceloglu, I. Koyuncu, Evaluation of biofouling behavior of zwitterionic silane coated reverse osmosis membranes fouled by marine bacteria, Prog. Org. Coat., 134 (2019) 303–311.
  59. S.E. Kirk, J.N. Skepper, A.M. Donald, Application of environmental scanning electron microscopy to determine biological surface structure, J. Microsc., 233 (2009) 205–224.
  60. T. Lauvvik, R. Bakke, Biofilm thickness measurements by variance analysis of optical images, J. Microbiol. Methods, 20 (1994) 219–224.
  61. Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, M. Nakano, Observation of nanostructure by scanning nearfield optical microscope with small sphere probe, Sci. Technol. Adv. Mater., 8 (2007) 181–185.
  62. D. Vobornik, S. Vobornik, Scanning near-field optical microscopy, Bosn. J. Basic Med. Sci., 8 (2008) 63–71.
  63. A.N. Cranin, Handbook of Biomaterials Evaluation. Scientific, Technical and Clinical Testing of Implant Materials, A.F. von Recum, Ed., MacMillan, New York, 1986. With a forward by Solomon Pollack and contributions by 61 authors and 10 section editors, Index, J. Biomed. Mater. Res., 21 (1987) 1167–1168.
  64. S. Chatterjee, N. Biswas, A. Datta, R. Dey, P. Maiti, Atomic force microscopy in biofilm study, Microscopy, 63 (2014) 269–278.
  65. Y.F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez- Martin, A. Engel, C. Gerber, D.J. Müller, Imaging modes of atomic force microscopy for application in molecular and cell biology, Nat. Nanotechnol., 12 (2017) 295–307.
  66. J. Reichman, Handbook of Optical Filters for Fluorescence Microscopy, Chroma Technology Corp., Bellows Falls, VT, USA, 2013.
  67. A. García, B. Rodríguez, D. Oztürk, M. Rosales, C. Paredes, F. Cuadra, S. Montserrat, Desalination performance of antibiofouling reverse osmosis membranes, Mod Environ. Sci. Eng., 2 (2016) 481–489.
  68. L.A. Bereschenko, A.J.M. Stams, G.J.W. Euverink, M.C.M. van Loosdrecht, Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp., Appl. Environ. Microbiol., 76 (2010) 2623–2632.
  69. M.M.T. Khan, P.S. Stewart, D.J. Moll, W.E. Mickols, M.D. Burr, S.E. Nelson, A.K. Camper, Assessing biofouling on polyamide reverse osmosis (RO) membrane surfaces in a laboratory system, J. Membr. Sci., 349 (2010) 429–437.
  70. M.M.T. Khan, P.S. Stewart, D.J. Moll, W.E. Mickols, S.E. Nelson, A.K. Camper, Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces, Biofouling, 27 (2011) 173–183.
  71. M. Roldán, E. Clavero, M. Hernández-Mariné, Confocal Laser Scanning Microscopy of Aerophytic Biofilms, in: Cultural Heritage Research: A Pan-European Challenge, Proceedings of the 5th EC Conference, Cracow, Poland, 2002, pp. 320–323.
  72. A. Tárnok, SYTO dyes and histoproteins—myriad of applications, Cytometry, Part A, 73A (2008) 477–479.
  73. D. Prieto, G. Aparicio, M. Machado, F.R. Zolessi, Application of the DNA-specific stain methyl green in the fluorescent labeling of embryos, J. Vis. Exp., 99 (2015) e52769, doi:10.3791/52769.
  74. J.A. Kiernan, Localization of α-D-glucosyl and α-D-mannosyl groups of mucosubstances with concanavalin A and horseradish peroxidase, Histochemistry, 44 (1975) 39–45.
  75. T.H. Steinberg, R.P. Haugland, V.L. Singer, Applications of SYPRO orange and SYPRO red protein gel stains, Anal. Biochem., 239 (1996) 238–245.
  76. B. Yuan, X. Wang, C. Tang, X. Li, G. Yu, In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy, Water Res., 75 (2015) 188–200.
  77. J. Luo, J. Zhang, X. Tan, D. McDougald, G. Zhuang, A.G. Fane, S. Kjelleberg, Y. Cohen, S.A. Rice, The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors, Biofouling, 30 (2014) 1093–1110.
  78. D. van der Kooij, W. Hijnen, C. Cristina, A. Brouwer-Hanzens, E. Cornelissen, Assessment of the Biofilm Removal Efficiency of Cleaning Agents and Procedures for RO/NF Membranes, Watercycle Research Institute, BTO Report - BTO 2011.056, Nieuwegein, 2012, pp. 1–86.
  79. D.S. Janjaroen, Role of Disinfectants and Pipe Materials on Bacterial Adhesion Onto Biofilms, University of Illinois at Urbana-Champaign, Urbana, Illinois, 2013.
  80. E. Drioli, A. Criscuoli, F. Macedonio, Membrane-Based Desalination: An Integrated Approach (MEDINA), IWA Publishing, 10 (2011), doi: 10.2166/9781780400914.
  81. A. Periasamy, P. Skoglund, C. Noakes, R. Keller, An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis, Microsc. Res. Tech., 47 (1999) 172–181.
  82. D.J. Hughes, Z. Cui, R.W. Field, U.K. Tirlapur, Membrane fouling by cell-protein mixtures: in situ characterisation using multi-photon microscopy, Biotechnol. Bioeng., 96 (2007) 1083–1091.
  83. D.J. Hughes, Z. Cui, R.W. Field, U.K. Tirlapur, In situ threedimensional characterization of membrane fouling by protein suspensions using multiphoton microscopy, Langmuir, 22 (2006) 6266–6272.
  84. R. Field, D. Hughes, Z. Cui, U. Tirlapur, Some observations on the chemical cleaning of fouled membranes, Desalination, 227 (2008) 132–138.
  85. Y. Marselina, P. Le-Clech, R. Stuetz, V. Chen, Detailed characterisation of fouling deposition and removal on a hollow fibre membrane by direct observation technique, Desalination, 231 (2008) 3–11.
  86. S.-T. Kang, A. Subramani, E.M.V. Hoek, M.A. Deshusses, M.R. Matsumoto, Direct observation of biofouling in crossflow microfiltration: mechanisms of deposition and release, J. Membr. Sci., 244 (2004) 151–165.
  87. A. Subramani, E.M.V. Hoek, Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes, J. Membr. Sci., 319 (2008) 111–125.
  88. J. Wang, A.G. Fane, J.W. Chew, Understanding the anaerobic fluidized membrane bioreactor for wastewater treatment, European Water, 58 (2017) 371–374.
  89. P. Le-Clech, Y. Marselina, Y. Ye, R.M. Stuetz, V. Chen, Visualisation of polysaccharide fouling on microporous membrane using different characterisation techniques, J. Membr. Sci., 290 (2007) 36–45.
  90. Y. Marselina, Lifia, P. Le-Clech, R.M. Stuetz, V. Chen, Characterisation of membrane fouling deposition and removal by direct observation technique, J. Membr. Sci., 341 (2009) 163–171.
  91. Y. Ye, P. Le-Clech, Evolution of fouling deposition and removal on hollow fibre membrane during filtration with periodical backwash, Desalination, 283 (2011) 198–205.
  92. S. Lorenzen, Y. Ye, V. Chen, M.L. Christensen, Direct observation of fouling phenomena during cross-flow filtration: influence of particle surface charge, J. Membr. Sci., 510 (2016) 546–558.
  93. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography, Science, 254 (1991) 1178–1181.
  94. I.D. Kilic, R. Serdoz, E. Fabris, F.A. Jaffer, C. Di Mario, Optical Coherence Tomography, Near-Infrared Spectroscopy, and Near-Infrared Fluorescence Molecular Imaging: Principles and Practice, in: Interventional Cardiology, John Wiley & Sons, Ltd., Chichester, UK, 2016, pp. 91–106.
  95. N.M. Israelsen, C.R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, O. Bang, Real-time high-resolution midinfrared optical coherence tomography, Light Sci. Appl., 8 (2019) 11, doi: 10.1038/s41377-019-0122-5.
  96. J.G. Fujimoto, C. Pitris, S.A. Boppart, M.E. Brezinski, Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy, Neoplasia, 2 (2000) 9–25.
  97. W. Li, X. Liu, Y.-N. Wang, T.H. Chong, C.Y. Tang, A.G. Fane, Analyzing the evolution of membrane fouling via a novel method based on 3D optical coherence tomography imaging, Environ. Sci. Technol., 50 (2016) 6930–6939.
  98. L. Fortunato, Y. Jang, J.-G. Lee, S. Jeong, S. Lee, T. Leiknes, N. Ghaffour, Fouling development in direct contact membrane distillation: non-invasive monitoring and destructive analysis, Water Res., 132 (2018) 34–41.
  99. A. Bauer, M. Wagner, F. Saravia, S. Bartl, V. Hilgenfeldt, H. Horn, In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography, J. Membr. Sci., 577 (2019) 145–152.
  100. C. Haisch, R. Niessner, Visualisation of transient processes in biofilms by optical coherence tomography, Water Res., 41 (2007) 2467–2472.
  101. M. Wagner, D. Taherzadeh, C. Haisch, H. Horn, Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography, Biotechnol. Bioeng., 107 (2010) 844–853.
  102. D. Janjaroen, F. Ling, G. Monroy, N. Derlon, E. Mogenroth, S.A. Boppart, W.-T. Liu, T.H. Nguyen, Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces, Water Res., 47 (2013) 2531–2542.
  103. N. Derlon, N. Koch, B. Eugster, T. Posch, J. Pernthaler, W. Pronk, E. Morgenroth, Activity of metazoa governs biofilm structure formation and enhances permeate flux during gravity-driven membrane (GDM) filtration, Water Res., 47 (2013) 2085–2095.
  104. N. Derlon, M. Peter-Varbanets, A. Scheidegger, W. Pronk, E. Morgenroth, Predation influences the structure of biofilm developed on ultrafiltration membranes, Water Res., 46 (2012) 3323–3333.
  105. S. West, M. Wagner, C. Engelke, H. Horn, Optical coherence tomography for the in situ three-dimensional visualization and quantification of feed spacer channel fouling in reverse osmosis membrane modules, J. Membr. Sci., 498 (2016) 345–352.
  106. L. Fortunato, S. Bucs, R.V. Linares, C. Cali, J.S. Vrouwenvelder, T. Leiknes, Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel, J. Membr. Sci., 524 (2017) 673–681.
  107. L. Fortunato, T. Leiknes, In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping, Bioresour. Technol., 229 (2017) 231–235.
  108. A. Inurria, P. Cay-Durgun, D. Rice, H. Zhang, D.-K. Seo, M.L. Lind, F. Perreault, Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: balancing membrane performance and fouling propensity, Desalination, 451 (2019) 139–147.
  109. C. Dreszer, A.D. Wexler, S. Drusová, T. Overdijk, A. Zwijnenburg, H.-C. Flemming, J.C. Kruithof, J.S. Vrouwenvelder, In-situ biofilm characterization in membrane systems using optical coherence tomography: formation, structure, detachment and impact of flux change, Water Res., 67 (2014) 243–254.
  110. L. Fortunato, S. Jeong, T. Leiknes, Time-resolved monitoring of biofouling development on a flat sheet membrane using optical coherence tomography, Sci. Rep., 7 (2017) 15, doi: 10.1038/s41598-017-00051-9.
  111. S. El Abed, F. Hamadi, H. Latrache, S.K. Ibnsouda, Scanning Electron Microscopy (SEM) and Environmental SEM: Suitable Tools for Study of Adhesion Stage and Biofilm Formation, INTECH Open Access Publisher, 2012.
  112. A. Storti, A.C. Pizzolitto, E.L. Pizzolitto, Detection of mixed microbial biofilms on central venous catheters removed from intensive care unit patients, Braz. J. Microbiol., 36 (2005) 275–280.
  113. G. Zhao, W.N. Chen, Biofouling formation and structure on original and modified PVDF membranes: role of microbial species and membrane properties, RSC Adv., 7 (2017) 37990–38000.
  114. W. Ma, M.S. Rahaman, H. Therien-Aubin, Controlling biofouling of reverse osmosis membranes through surface modification via grafting patterned polymer brushes, J. Water Reuse Desal., 5 (2015) 326–334.
  115. T.N. Tengku Sallehuddin, M. Abu Seman, Modification of thin-film composite nanofiltration membrane using silver nanoparticles: preparation, characterization and antibacterial performance, J. Membr. Sci. Res., 3 (2017) 29–35.
  116. H. Ivnitsky, I. Katz, D. Minz, G. Volvovic, E. Shimoni, E. Kesselman, R. Semiat, C.G. Dosoretz, Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment, Water Res., 41 (2007) 3924–3935.
  117. M. Amouamouha, G.B. Gholikandi, M. Amouamouha, G. Badalians Gholikandi, Characterization and antibiofouling performance investigation of hydrophobic silver nanocomposite membranes: a comparative study, Membranes (Basel), 7 (2017) 64, doi: 10.3390/membranes7040064.
  118. C. Whittaker, H. Ridgway, B.H. Olson, Evaluation of cleaning strategies for removal of biofilms from reverse-osmosis membranes, Appl. Environ. Microbiol., 48 (1984) 395–403.
  119. S. Erkoc-Ilter, F. Saffarimiandoab, S. Guclu, D.Y. Koseoglu- Imer, B. Tunaboylu, Y. Menceloglu, I. Koyuncu, S. Unal, Surface modification of reverse osmosis desalination membranes with zwitterionic silane compounds for enhanced organic fouling resistance, Ind. Eng. Chem. Res., 60 (2021) 5133–5144.
  120. R. Chan, V. Chen, Characterization of protein fouling on membranes: opportunities and challenges, J. Membr. Sci., 242 (2004) 169–188.
  121. J.H. Priester, A.M. Horst, L.C. Van De Werfhorst, J.L. Saleta, L.A.K. Mertes, P.A. Holden, Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy, J. Microbiol. Methods, 68 (2007) 577–587.
  122. M.G. Darkin, C. Gilpin, J.B. Williams, C.M. Sangha, Direct wet surface imaging of an anaerobic biofilm by environmental scanning electron microscopy: application to landfill clay liner barriers, Scanning, 23 (2006) 346–350.
  123. B. Little, P. Wagner, R. Ray, R. Pope, R. Scheetz, Biofilms: an ESEM evaluation of artifacts introduced during SEM preparation, J. Ind. Microbiol., 8 (1991) 213–221.
  124. E. Stabentheiner, A. Zankel, P. Pölt, Environmental scanning electron microscopy (ESEM)—a versatile tool in studying plants, Protoplasma, 246 (2010) 89–99.
  125. P. Le-Clech, Y. Marselina, R.M. Stuetz, V. Chen, Fouling Visualisation of Soluble Microbial Product Models in MBRs, Conference of the European Membrane Society (EUROMEMBRANE 2006), Giardini Naxos Italy, 24-28 September 2006, Elsevier, Amsterdam, Netherlands, 2006.
  126. Y.R. Teo, Y.K. Yong, A.J. Fleming, A Review of Scanning Methods and Control Implications for Scanning Probe Microscopy, 2016 American Control Conference (ACC), IEEE, Boston, MA, USA, 2016, pp. 7377–7383.
  127. C.V. Nguyen, C. So, R.M. Stevens, Y. Li, L. Delziet, P. Sarrazin, M. Meyyappan, High lateral resolution imaging with sharpened tip of multi-walled carbon nanotube scanning probe, J. Phys. Chem. B, 108 (2004) 2816–2821.
  128. M. Tomitori, T. Arai, Tip cleaning and sharpening processes for noncontact atomic force microscope in ultrahigh vacuum, Appl. Surf. Sci., 140 (1999) 432–438.
  129. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett., 49 (1982) 57, doi: 10.1103/PhysRevLett.49.57.
  130. S.-L. Guo, B.-L. Chen, S.A. Durrani, Chapter 3 – Solid-State Nuclear Track Detectors, M.F. L’Annunziata, Ed., Handbook of Radioactivity Analysis (Fourth Edition), Volume 1: Radiation Physics and Detectors, Academic Press, United States, 2012, pp. 233–298.
  131. E.-S. Kwak, T.J. Kang, D.A. Vanden Bout, Fluorescence lifetime imaging with near-field scanning optical microscopy, Anal. Chem., 73 (2001) 3257–3262.
  132. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Near field scanning optical microscopy (NSOM): development and biophysical applications, Biophys. J., 49 (1986) 269–279.
  133. R.C. Dunn, Near-field scanning optical microscopy, Chem. Rev., 99 (1999) 2891–2928.
  134. S. Vahabi, B. Nazemi Salman, A. Javanmard, Atomic force microscopy application in biological research: a review study, Iran. J. Med. Sci., 38 (2013) 76–83.
  135. Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Fractured polymer/ silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci., 290 (1993) L688–L692.
  136. H. Wang, P.K. Chu, Chapter 4 – Surface Characterization of Biomaterials, A. Bandyopadhyay, S. Bose, Eds., Characterization of Biomaterials, Elsevier, 2013, pp. 105–174.
  137. A.M. Zaky, I.C. Escobar, C.L. Gruden, Application of atomic force microscopy for characterizing membrane biofouling in the micrometer and nanometer scales, Environ. Prog. Sustainable Energy, 32 (2013) 449–457.
  138. S. Javdaneh, M.R. Mehrnia, M. Homayoonfal, Engineering design of a biofilm formed on a pH-sensitive ZnO/PSf nanocomposite membrane with antibacterial properties, RSC Adv., 6 (2016) 112269–112281.
  139. B. Tang, C. Yu, L. Bin, Y. Zhao, X. Feng, S. Huang, F. Fu, J. Ding, C. Chen, P. Li, Q. Chen, Essential factors of an integrated moving bed biofilm reactor–membrane bioreactor: adhesion characteristics and microbial community of the biofilm, Bioresour. Technol., 211 (2016) 574–583.
  140. C.J. Wright, I. Armstrong, The application of atomic force microscopy force measurements to the characterisation of microbial surfaces, Surf. Interface Anal., 38 (2006) 1419–1428.
  141. W.R. Bowen, N. Hilal, R.W. Lovitt, P.M. Williams, Atomic force microscope studies of membranes: surface pore structures of diaflo ultrafiltration membranes, J. Colloid Interface Sci., 180 (1996) 350–359.
  142. W. Richard Bowen, N. Hilal, R.W. Lovitt, A.O. Sharif, P.M. Williams, Atomic force microscope studies of membranes: force measurement and imaging in electrolyte solutions, J. Membr. Sci., 126 (1997) 77–89.
  143. S. Marka, S. Anand, Feed substrates influence biofilm formation on reverse osmosis membranes and their cleaning efficiency, J. Dairy Sci., 101 (2018) 84–95.
  144. L.C. Powell, N. Hilal, C.J. Wright, Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes, Desalination, 404 (2017) 313–321.
  145. M.R. Gryk, J. Vyas, M.W. Maciejewski, Biomolecular NMR data analysis, Prog. Nucl. Magn. Reson. Spectrosc., 56 (2010) 329–345.
  146. J.H. Lee, Y. Okuno, S. Cavagnero, Sensitivity enhancement in solution NMR: emerging ideas and new frontiers, J. Magn. Reson., 241 (2014) 18–31.
  147. R.G. Evens, Economic costs of nuclear magnetic resonance imaging, J. Comput. Assisted Tomogr., 8 (1984) 200–203.
  148. Y. Li, M.E. Lacey, J. V Sweedler, A.G. Webb, Spectral restoration from low signal-to-noise, distorted NMR signals: application to hyphenated capillary electrophoresis-NMR, J. Magn. Reson., 162 (2003) 133–140.
  149. D.A. Graf von der Schulenburg, J.S. Vrouwenvelder, S.A. Creber, M.C.M. van Loosdrecht, M.L. Johns, Nuclear magnetic resonance microscopy studies of membrane biofouling, J. Membr. Sci., 323 (2008) 37–44.
  150. J. Schmitt, H.-C. Flemming, FTIR-spectroscopy in microbial and material analysis, Int. Biodeterior. Biodegrad., 41 (1998) 1–11.
  151. F. Humbert, F. Quilès, In-situ Study of Early Stages of Biofilm Formation Under Different Environmental Stresses by ATRFTIR Spectroscopy, A. Mendez-Vilas, Ed., Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, Formatex, Spain, 2011.
  152. F. Faghihzadeh, N.M. Anaya, L.A. Schifman, V. Oyanedel- Craver, Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles, Nanotechnol. Environ. Eng., 1 (2016) 1, doi: 10.1007/s41204-016-0001-8.
  153. R.M. Donlan, J.A. Piede, C.D. Heyes, L. Sanii, R. Murga, P. Edmonds, I. El-Sayed, M.A. El-Sayed, Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time, Appl. Environ. Microbiol., 70 (2004) 4980–4988.
  154. L. Benavente, C. Coetsier, A. Venault, Y. Chang, C. Causserand, P. Bacchin, P. Aimar, FTIR mapping as a simple and powerful approach to study membrane coating and fouling, J. Membr. Sci., 520 (2016) 477–489.
  155. M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 99 (1977) 5215–5217.
  156. L. Cui, M. Yao, B. Ren, K.-S. Zhang, Sensitive and versatile detection of the fouling process and fouling propensity of proteins on polyvinylidene fluoride membranes via surfaceenhanced raman spectroscopy, Anal. Chem., 83 (2011) 1709–1716.
  157. M. Kögler, B. Zhang, L. Cui, Y. Shi, M. Yliperttula, T. Laaksonen, T. Viitala, K. Zhang, Real-time Raman based approach for identification of biofouling, Sens. Actuators, B, 230 (2016) 411–421.
  158. L. Cui, P. Chen, B. Zhang, D. Zhang, J. Li, F.L. Martin, K. Zhang, Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency, Water Res., 87 (2015) 282–291.
  159. K. Huttenlochner, C. Müller-Renno, C. Ziegler, R. Merz, B. Merz, M. Kopnarski, J. Chodorski, C. Schlegel, R. Ulber, Removing biofilms from stainless steel without changing surface properties relevant for bacterial attachment, Biointerphases, 12 (2017) 02C404, doi: 10.1116/1.4982196.
  160. V.M. Huang, S.-L. Wu, M.E. Orazem, N. Pébère, B. Tribollet, V. Vivier, Local electrochemical impedance spectroscopy: a review and some recent developments, Electrochim. Acta, 56 (2011) 8048–8057.
  161. M.J. Franklin, D.E. Nivens, J.B. Guckert, D.C. White, Technical note: effect of electrochemical impedance spectroscopy on microbial biofilm cell numbers, viability, and activity, Corrosion, 47 (1991) 519–522.
  162. J.S. Ho, J.H. Low, L.N. Sim, R.D. Webster, S.A. Rice, A.G. Fane, H.G.L. Coster, In-situ monitoring of biofouling on reverse osmosis membranes: detection and mechanistic study using electrical impedance spectroscopy, J. Membr. Sci., 518 (2016) 229–242.
  163. A. Bax, S. Subramanian, Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy, J. Magn. Reson., 67 (1986) 565–569.
  164. D.S. Wishart, C.G. Bigam, J. Yao, F. Abildgaard, H.J. Dyson, E. Oldfield, J.L. Markley, B.D. Sykes, 1H, 13C and 15N chemical shift referencing in biomolecular NMR, J. Biomol. NMR, 6 (1995) 135–140.
  165. J.A. Detre, Magnetic Resonance Imaging, Neurobiol. Dis., 2007, pp. 793–800.
  166. S.A. Creber, T.R.R. Pintelon, D.A.W. Graf von der Schulenburg, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, M.L. Johns, Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes, Food Bioprod. Process., 88 (2010) 401–408.
  167. J.S. Vrouwenvelder, C. Picioreanu, J.C. Kruithof, M.C.M. van Loosdrecht, Biofouling in spiral wound membrane systems: three-dimensional CFD model based evaluation of experimental data, J. Membr. Sci., 346 (2010) 71–85.
  168. E.O. Fridjonsson, S.J. Vogt, J.S. Vrouwenvelder, M.L. Johns, Early non-destructive biofouling detection in spiral wound RO membranes using a mobile earth’s field NMR, J. Membr. Sci., 489 (2015) 227–236.
  169. J.R. Heber, E.A. Orvil, Infrared spectroscopy as a means for identification of bacteria, Science, 116 (1952) 111–112.
  170. V. Shapaval, B. Walczak, S. Gognies, T. Møretrø, H.P. Suso, A. Wold Åsli, A. Belarbi, A. Kohler, FTIR spectroscopic characterization of differently cultivated food related yeasts, Analyst, 138 (2013) 4129, doi: 10.1039/c3an00304c.
  171. V. Shapaval, J. Schmitt, T. Møretrø, H.P. Suso, I. Skaar, A.W. Åsli, D. Lillehaug, A. Kohler, Characterization of food spoilage fungi by FTIR spectroscopy, J. Appl. Microbiol., 114 (2013) 788–796.
  172. M. Lin, M. Al-Holy, H. Al-Qadiri, D.-H. Kang, A.G. Cavinato, Y. Huang, B.A. Rasco, Discrimination of intact and injured Listeria monocytogenes by Fourier transform infrared spectroscopy and principal component analysis, J. Agric. Food Chem., 52 (2004) 5769–5772.
  173. H.M. Al-Qadiri, M. Lin, M.A. Al-Holy, A.G. Cavinato, B.A. Rasco, Detection of sublethal thermal injury in Salmonella enterica serotype typhimurium and Listeria monocytogenes using Fourier transform infrared (FTIR) spectroscopy (4000 to 600 cm−1), J. Food Sci., 73 (2008) M54–M61.
  174. K.A. Puzey, P.J. Gardner, V.K. Petrova, C.W. Donnelly, G.A. Petrucci, Automated species and strain identification of bacteria in complex matrices using FTIR spectroscopy, Proc. SPIE 6954, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing IX, 695412 (17 April 2008).
  175. H.C. van der Mei, D. Naumann, H.J. Busscher, Grouping of streptococcus mitis strains grown on different growth media by FTIR, Infrared Phys. Technol., 37 (1996) 561–564.
  176. M.C. Curk, F. Peledan, J.C. Hubert, Fourier transform infrared (FTIR) spectroscopy for identifying Lactobacillus species, FEMS Microbiol. Lett., 123 (1994) 241–248.
  177. K.J. Howe, K.P. Ishida, M.M. Clark, Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters, Desalination, 147 (2002) 251–255.
  178. G.J. Ellis, M.C. Martin, Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy, Eur. Polym. J., 81 (2016) 505–531.
  179. M. Xie, W. Luo, S.R. Gray, Synchrotron Fourier transform infrared mapping: A novel approach for membrane fouling characterization, Water Res., 111 (2017) 375–381.
  180. N.R. Maddela, Z. Zhou, Z. Yu, S. Zhao, F. Meng, Functional determinants of extracellular polymeric substances in membrane biofouling: experimental evidence from purecultured sludge bacteria, Appl. Environ. Microbiol., 84 (2018) e00756-18.
  181. M.M. Rahman, S. Al-Sulaimi, A.M. Farooque, Characterization of new and fouled SWRO membranes by ATR/FTIR spectroscopy, Appl. Water Sci., 8 (2018) 183, doi: 10.1007/ s13201-018-0806-7.
  182. K.C. Khulbe, B. Kruczek, G. Chowdhury, S. Gagné, T. Matsuura, S.P. Verma, Characterization of membranes prepared from PPO by Raman scattering and atomic force microscopy, J. Membr. Sci., 111 (1996) 57–70.
  183. R. Lamsal, S.G. Harroun, C.L. Brosseau, G.A. Gagnon, Use of surface enhanced Raman spectroscopy for studying fouling on nanofiltration membrane, Sep. Purif. Technol., 96 (2012) 7–11.
  184. T. Virtanen, S.-P. Reinikainen, M. Kögler, M. Mänttäri, T. Viitala, M. Kallioinen, Real-time fouling monitoring with Raman spectroscopy, J. Membr. Sci., 525 (2017) 312–319.
  185. L. Cui, S. Chen, K. Zhang, Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria, Spectrochim. Acta, Part A, 137 (2015) 1061–1066.
  186. B.-Y. Chang, S.-M. Park, Electrochemical impedance spectroscopy, Annu. Rev. Anal. Chem., 3 (2010) 207–229.
  187. R. Sengur-Tasdemir, Z. Guler-Gokce, A. Sezai Sarac, I. Koyuncu, Determination of membrane protein fouling by UV spectroscopy and electrochemical impedance spectroscopy, Polym. Plast. Technol. Eng., 57 (2018) 59–69.
  188. H.G.L. Coster, T.C. Chilcott, A.C.F. Coster, Impedance spectroscopy of interfaces, membranes and ultrastructures, Bioelectrochem. Bioenerg., 40 (1996) 79–98.
  189. F. Gao, J. Wang, H. Zhang, H. Jia, Z. Cui, G. Yang, Role of ionic strength on protein fouling during ultrafiltration by synchronized UV-vis spectroscopy and electrochemical impedance spectroscopy, J. Membr. Sci., 563 (2018) 592–601.
  190. J.M. Kavanagh, S. Hussain, T.C. Chilcott, H.G.L. Coster, Fouling of reverse osmosis membranes using electrical impedance spectroscopy: measurements and simulations, Desalination, 236 (2009) 187–193.
  191. L.N. Sim, Z.J. Wang, J. Gu, H.G.L. Coster, A.G. Fane, Detection of reverse osmosis membrane fouling with silica, bovine serum albumin and their mixture using in-situ electrical impedance spectroscopy, J. Membr. Sci., 443 (2013) 45–53.
  192. J.S. Park, J.H. Choi, K.H. Yeon, S.H. Moon, An approach to fouling characterization of an ion-exchange membrane using current-voltage relation and electrical impedance spectroscopy, J. Colloid Interface Sci., 294 (2006) 129–138.
  193. J.S. Park, T.C. Chilcott, H.G.L. Coster, S.H. Moon, Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data, J. Membr. Sci., 246 (2005) 137–144.
  194. J. Cen, M. Vukas, G. Barton, J. Kavanagh, H.G.L. Coster, Real time fouling monitoring with electrical impedance spectroscopy, J. Membr. Sci., 484 (2015) 133–139.
  195. J.S. Ho, L.N. Sim, R.D. Webster, B. Viswanath, H.G.L. Coster, A.G. Fane, Monitoring fouling behavior of reverse osmosis membranes using electrical impedance spectroscopy: a field trial study, Desalination, 407 (2017) 75–84.
  196. E.A. Genceli, R. Sengur-Tasdemir, G.M. Urper, S. Gumrukcu, Z. Guler-Gokce, U. Dagli, T. Turken, A.S. Sarac, I. Koyuncu, Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy, Polym. Bull., 75 (2018) 2431–2457.
  197. H. Ivnitsky, I. Katz, D. Minz, E. Shimoni, Y. Chen, J. Tarchitzky, R. Semiat, C.G. Dosoretz, Characterization of membrane biofouling in nanofiltration processes of wastewater treatment, Desalination, 185 (2005) 255–268.
  198. C.M. Pang, W.-T. Liu, community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling, Environ. Sci. Technol., 41 (2007) 4728–4734.
  199. W. Zhi, Z. Ge, Z. He, H. Zhang, Methods for understanding microbial community structures and functions in microbial fuel cells: a review, Bioresour. Technol., 171 (2014) 461–468.
  200. H.W. Kim, H.S. Oh, S.R. Kim, K.B. Lee, K.M. Yeon, C.H. Lee, S. Kim, J.K. Lee, Microbial population dynamics and proteomics in membrane bioreactors with enzymatic quorum quenching, Appl. Microbiol. Biotechnol., 97 (2013) 4665–4675.
  201. B. Yavuzturk Gul, D.Y. Imer, P.-K. Park, I. Koyuncu, Evaluation of a novel anti-biofouling microorganism (Bacillus sp. T5) for control of membrane biofouling and its effect on bacterial community structure in membrane bioreactors., Water Sci. Technol., 77 (2018) 971–978.
  202. B.Y. Gül, D.Y. Imer, P.-K. Park, I. Koyuncu, Selection of quorum quenching (QQ) bacteria for membrane biofouling control: effect of different gram-staining QQ bacteria, Bacillus sp. T5 and Delftia sp. T6, on microbial population in membrane bioreactors, Water Sci. Technol., 78 (2018) 358–366.
  203. Y.L. Huang, J.S. Ki, R.J. Case, P.Y. Qian, Diversity and acylhomoserine lactone production among subtidal biofilmforming bacteria, Aquat. Microb. Ecol., 52 (2008) 185–193.
  204. R.I. Amann, W. Ludwig, K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59 (1995) 143–169.
  205. A. Poli, B. Nicolaus, A.A. Denizci, B. Yavuzturk, D. Kazan, Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium, Int. J. Syst. Evol. Microbiol., 63 (2013) 10–18.
  206. S. Lim, S. Kim, K.M. Yeon, B.I. Sang, J. Chun, C.H. Lee, Correlation between microbial community structure and biofouling in a laboratory scale membrane bioreactor with synthetic wastewater, Desalination, 287 (2012) 209–215.
  207. C.L. Chen, W.T. Liu, M.L. Chong, M.T. Wong, S.L. Ong, H. Seah, W.J. Ng, Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach, Appl. Microbiol. Biotechnol., 63 (2004) 466–473.
  208. L.A. Bereschenko, G.H.J. Heilig, M.M. Nederlof, M.C.M. Van Loosdrecht, A.J.M. Stams, G.J.W. Euverink, Molecular characterization of the bacterial communities in the different compartments of a full-scale reverse-osmosis water purification plant, Appl. Environ. Microbiol., 74 (2008) 5297–5304.
  209. A.S. Ziegler, S.J. McIlroy, P. Larsen, M. Albertsen, A.A. Hansen, N. Heinen, P.H. Nielsen, Dynamics of the fouling layer microbial community in a membrane bioreactor, PLoS One, 11 (2016) e0158811, doi: 10.1371/ journal.pone.0158811.
  210. S. Mikhaylin, L. Bazinet, Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control, Adv. Colloid Interface Sci., 229 (2015) 34–56.
  211. S. Jeong, K. Cho, H. Bae, P. Keshvardoust, S.A. Rice, S. Vigneswaran, S. Lee, T. Leiknes, Effect of microbial community structure on organic removal and biofouling in membrane adsorption bioreactor used in seawater pretreatment, Chem. Eng. J., 294 (2016) 30–39.
  212. A. Al Ashhab, O. Gillor, M. Herzberg, Biofouling of reverseosmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition., Water Res., 67 (2014) 86–95.
  213. C.M. Pang, W.-T. Liu, Community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling, Environ. Sci. Technol., 41 (2007) 4728–4734.
  214. R. Amann, B.M. Fuchs, S. Behrens, The identification of microorganisms by fluorescence in situ hybridisation, Curr. Opin. Biotechnol., 12 (2001) 231–236.
  215. G. Muyzer, E.C. de Waal, A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA, Appl. Environ. Microbiol., 59 (1993) 695–700.
  216. A. Drews, Membrane fouling in membrane bioreactors – characterisation, contradictions, cause and cures, J. Membr. Sci., 363 (2010) 1–28.
  217. H. Luo, P. Xu, Z. Ren, Long-term performance and characterization of microbial desalination cells in treating domestic wastewater, Bioresour. Technol., 120 (2012) 187–193.
  218. A. Piasecka, R. Bernstein, F. Ollevier, F. Meersman, C. Souffreau, R.M. Bilad, K. Cottenie, L. Vanysacker, C. Denis, I. Vankelecom, Study of biofilms on PVDF membranes after chemical cleaning by sodium hypochlorite, Sep. Purif. Technol., 141 (2015) 314–321.
  219. J. Cho, G. Amy, J. Pellegrino, Y. Yoon, Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization, Desalination, 118 (1998) 101–108.
  220. F. Zhao, K. Xu, H. Ren, L. Ding, J. Geng, Y. Zhang, Combined effects of organic matter and calcium on biofouling of nanofiltration membranes, J. Membr. Sci., 486 (2015) 177–188.
  221. R. Glud, N. Ramsing, J. Gundersen, I. Klimant, Planar optrodes:a new tool for fine scale measurements of twodimensional O2 distribution in benthic communities, Mar. Ecol. Prog. Ser., 140 (1996) 217–226.
  222. E.I. Prest, M. Staal, M. Kühl, M.C.M. van Loosdrecht, J.S. Vrouwenvelder, Quantitative measurement and visualization of biofilm O2 consumption rates in membrane filtration systems, J. Membr. Sci., 392–393 (2012) 66–75.
  223. N.M. Farhat, M. Staal, A. Siddiqui, S.M. Borisov, S.S. Bucs, J.S. Vrouwenvelder, Early non-destructive biofouling detection and spatial distribution: application of oxygen sensing optodes, Water Res., 83 (2015) 10–20.
  224. M. Staal, E.I. Prest, J.S. Vrouwenvelder, L.F. Rickelt, M. Kühl, A simple optode based method for imaging O2 distribution and dynamics in tap water biofilms, Water Res., 45 (2011) 5027–5037.
  225. N.M. Farhat, J.S. Vrouwenvelder, M.C.M. Van Loosdrecht, S.S. Bucs, M. Staal, Effect of water temperature on biofouling development in reverse osmosis membrane systems, Water Res., 103 (2016) 149–159.
  226. N.M. Farhat, M. Staal, S.S. Bucs, M.C.M. Van Loosdrecht, J.S. Vrouwenvelder, Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems, J. Membr. Sci., 520 (2016) 964–971.
  227. P. van den Brink, F. Vergeldt, H. Van As, A. Zwijnenburg, H. Temmink, M.C.M. van Loosdrecht, Potential of mechanical cleaning of membranes from a membrane bioreactor, J. Membr. Sci., 429 (2013) 259–267.
  228. J. Kappelhof, H.S. Vrouwenvelder, M. Schaap, J.C. Kruithof, D. Van Der Kooij, J.C. Schippers, An in situ biofouling monitor for membrane systems, Water Sci. Technol. Water Supply, 3 (2003) 205–210.
  229. C. Causserand, P. Aimar, Characterization of Filtration Membranes, Comprehensive Membrane Science and Engineering, 2010, pp. 311–335.
  230. M. Nyström, A. Pihlajamäki, N. Ehsani, Characterization of ultrafiltration membranes by simultaneous streaming potential and flux measurements, J. Membr. Sci., 87 (1994) 245–256.
  231. M.-S. Chun, W.C. Park, Time evolution of electrokinetic flow-induced streaming potential and flux in dead-end and cross-flow filtration of colloids through nanopores, J. Membr. Sci., 243 (2004) 417–424.
  232. M.-S. Chun, H. Il Cho, I.K. Song, Electrokinetic behavior of membrane zeta potential during the filtration of colloidal suspensions, Desalination, 148 (2002) 363–368.
  233. I. Petrinić, T. Pušić, I. Mijatović, B. Simončič, S. Šostar Turk, Characterization of polymeric nanofiltration membranes, Kem. u Ind., 56 (2007) 561–567.
  234. B. Teychene, P. Loulergue, C. Guigui, C. Cabassud, Development and use of a novel method for in line characterisation of fouling layers electrokinetic properties and for fouling monitoring, J. Membr. Sci., 370 (2011) 45–57.
  235. H. Jia, H. Zhang, J. Wang, H. Zhang, X. Zhang, Response of zeta potential to different types of local membrane fouling in dead-end membrane filtration with yeast suspension, RSC Adv., 5 (2015) 78738–78744.