References
- B. Ibeh, C.L. Gardner, M. Ternan, Separation of hydrogen
from a hydrogen/methane mixture using a PEM fuel cell, Fuel
Cells, 32 (2007) 908–914.
- B. Zornoza, C. Casado, A. Navajas, Chapter 11 – Advances
in Hydrogen Separation and Purification with Membrane
Technology, L.M. Gandía, G. Arzamendi, P.M. Diéguez, Eds.,
Renewable Hydrogen Technologies Production, Purification,
Storage, Applications and Safety, Elsevier, Amsterdam, 2013,
pp. 245–268.
- J. Kotowicz, D. Węcel, M. Jurczyk, Analysis of component
operation in power-to-gas-to-power installations, Appl. Energy,
216 (2018) 45–59.
- https://www.iea.org/reports/hydrogen n.d.
- M. Jaschik, M. Tańczyk, J. Jaschik, A. Janusz-Cygan,
The performance of a hybrid VSA-membrane process for the
capture of CO2 from flue gas, Int. J. Greenhouse Gas Control,
97 (2020) 103037, doi:10.1016/j.ijggc.2020.103037.
- C.Y. Chuah, J. Lee, T.-H. Bae, Graphene-based membranes
for H2 separation: recent progress and future perspective,
Membranes, 10 (2020) 336, doi: 10.3390/membranes10110336.
- Flexible Hybrid Separation System for H2 Recovery from NG
Grids, HyGrid Project 1.05.2016–30.06.2021, H2020-EU.3.3.8.3.
- M. Tańczyk, K. Warmuziński, M. Jaschik, Wydzielanie
wodoru z mieszanin gazowych powstałych w procesie
wysokotemperaturowej konwersji gazu koksowniczego,
Polityka energetyczna, 12 (2009) 577–591.
- D. Grainger, M.B. Hägg, Evaluation of cellulose-derived carbon
molecular sieve membranes for hydrogen separation from light
hydrocarbons, J. Membr. Sci., 306 (2007) 307–317.
- W.R. Baker, Membrane Technology and Applications, John
Wiley and Sons Ltd., UK, 2012.
- S. Uemiya, Brief review of steam reforming using a metal
membrane reactor, Top. Catal., 29 (2004) 79–84.
- S. Adhikari, S. Fernando, Hydrogen membrane separation
techniques, Ind. Eng. Chem. Res., 45 (2006) 875–881.
- N.A. Al-Mufachi, N.V. Rees, R. Steinberger-Wilkens, Hydrogen
selective membranes: a review of palladium-based dense metal
membranes, Renewable Sustainable Energy Rev., 47 (2015)
540–551.
- B.D. Freeman, I. Pinnau, Chapter 1 – Gas and Liquid Separations
using Membranes: An Overview, I. Pinnau, B.D. Freeman, Eds.,
Advanced Materials for Membrane Separations, Vol. 876, ACS
Symposium Series, American Chemical Society, Washington,
DC, 2004, pp. 1–23.
- K. Janusz-Szymańska, J. Kotowicz, Wychwyt wodoru z gazu
ziemnego przy użyciu technologii membranowych, Rynek
Energii, 5 (2020) 33–37.
- J. Davidson, K. Thambimuthu, Technologies for Capture of
Carbon Dioxide, Proceedings of the Seventh Greenhouse Gas
Technology Conference, Vancouver, Canada, International
Energy Association (IEA), Greenhouse Gas R&D Programme,
2004.
- G. Krishnan, D. Steele, K. O’Brien, R. Alan Callahan, Simulation
of a process to capture CO2 from IGCC syngas using a high
temperature PBI membrane, Energy Procedia, 1 (2009) 4079–4088.
- D. Lee, L. Zhang, S. Oyama, S. Niu, R. Saraf, Synthesis,
characterization, and gas permeation properties of a hydrogen
permeable silica membrane supported on porous alumina,
J. Membr. Sci., 231 (2004) 117–126.
- W. Liemberger, M. Gro, M. Miltner, M. Harasek, Experimental
analysis of membrane and pressure swing adsorption (PSA)
for the hydrogen separation from natural gas, J. Cleaner Prod.,
167 (2017) 896–907.
- S. Lamichaney, R.K. Baranwal, S. Maitra, G. Majumdar,
Clean Energy Technologies: Hydrogen Power and Fuel
Cells, Reference Module in Materials Science and Materials
Engineering, 3 (2020) 366–371.
- S. Bourne, The future of fuel: the future of hydrogen, Fuel Cells
Bull., 2012 (2012) 12–15.
- L. Lei, J. Zhang, R. Guan, J. Liu, F. Chen, Z. Tao, Energy
storage and hydrogen production by proton conducting solid
oxide electrolysis cells with a novel heterogeneous design,
Energy Convers. Manage., 218 (2020) 113044, doi: 10.1016/j.
enconman.2020.113044.
- L. Vermaak, H.W.J.P. Neomagus, D.G. Bessarabov, Hydrogen
separation and purification from various gas mixtures by means
of electrochemical membrane technology in the temperature
range 100–160°C, Membranes, 11 (2021) 282, doi: 10.3390/membranes11040282.
- J. Zhang, M. Ren, X. Li, Y. Ge, F. Gao, H. Chen, Q. Hao, X. Ma,
Syngas production by integrating CO2 partial gasification of
pine sawdust and methane pyrolysis over the gasification
residue, Int. J. Hydrogen Energy, 44 (2019) 19742–19754, doi:
10.1016/j.ijhydene.2019.06.014.
- N. Rajalakshmi, R. Balaji, S. Ramakrishnan, Chapter 14 –
Recent Developments in Hydrogen Fuel Cells: Strengths and
Weaknesses, S. Dutta, C. Mustansar, Eds., Hussain Sustainable
Fuel Technologies Handbook, Academic Press, 2021, pp. 431–456.
- L. Mosca, E. Palo, M. Colozzi, G. Iaquaniello, A. Salladini,
S. Taraschi, Chapter 17 – Hydrogen in Chemical and
Petrochemical Industry, A. Iulianelli, A. Basile, Eds., Current
Trends and Future Developments on (Bio-) Membranes:
New Perspectives on Hydrogen Production, Separation, and
Utilization, Elsevier, 2020,
pp. 387–410.
- M. Szwast, New membranes for dehydration of natural gas,
Przemysł Chemiczny, 94 (2015) 2213–2217.
- Dense Membranes for Efficient Oxygen and Hydrogen
Separation, Demoys Project 1.05.2010–31.07.2014, FP7-ENERGY.
- M.A. Llosa Tanco, J.A. Medrano, V. Cechetto, F. Gallucci,
D.A. Pacheco Tanaka, Hydrogen permeation studies of
composite supported alumina-carbon molecular sieves
membranes: separation of diluted hydrogen from mixtures
with methane, Int. J. Hydrogen Energy, 46 (2021) 19758–19767.
- M. Nordio, S. Assefa Wassie, M. Van Sint Annaland, D. Alfredo
Pacheco Tanaka, J. Luis Viviente Sole, F. Gallucci, Technoeconomic
evaluation on a hybrid technology for low hydrogen
concentration separation and purification from natural gas
grid, Int. J. Hydrogen Energy, 46 (2021) 23417–23435.