References
- H.R. Pouretedal, Visible photocatalytic activity of co-doped
TiO2/Zr,N nanoparticles in wastewater treatment of
nitrotoluene samples, J. Alloys Compd., 735 (2018) 2507–2511.
- M. Rostami, H. Mazaheri, A. Hassani Joshaghani, A. Shokri,
Using experimental design to optimize the photo-degradation
of p-nitro toluene by nano-TiO2 in synthetic wastewater, Int.
J. Eng., 32 (2019) 1074–1081.
- M. Rostami, A. Hassani Joshaghani, H. Mazaheri, A. Shokri,
Photo-degradation of p-nitro toluene using modified bentonite
based nano-TiO2 photocatalyst in aqueous solution, Int. J. Eng.,
34 (2021) 756–762.
- G.K.K. Reddy, M. Sarvajith, Y. Nancharaiah, V. Venugopalan,
2,4-Dinitrotoluene removal in aerobic granular biomass sequencing
batch reactors, Int. Biodeterior. Biodegrad., 119 (2017) 56–65.
- J. Huang, G. Ning, F. Li, G.D. Sheng, Biotransformation of
2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1
under anaerobic conditions, Bioresour. Technol., 180 (2015)
200–206.
- D. Kundu, C. Hazra, A. Chaudhari, Biodegradation of
2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics,
kinetic modeling, physiological responses and
metabolic pathway, RSC Adv., 5 (2015) 38818–38829.
- A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Integrated
fuzzy AHP-TOPSIS for selecting the best color removal
process using carbon-based adsorbent materials: multicriteria
decision making vs. systematic review approaches
and modeling of textile wastewater treatment in real
conditions, Int. J. Environ. Anal. Chem., (2020) 1–16, doi:
10.1080/03067319.2020.1828395.
- A. Azari, M. Yeganeh, M. Gholami, M. Salari, The superior
adsorption capacity of 2,4-dinitrophenol under ultrasoundassisted
magnetic adsorption system: modeling and process
optimization by central composite design, J. Hazard. Mater.,
418 (2021) 126348, doi: 10.1016/j.jhazmat.2021.126348
- A.A. Babaei, M. Golshan, B. Kakavandi, A heterogeneous
photocatalytic sulfate radical-based oxidation process for
efficient degradation of 4-chlorophenol using TiO2 anchored on
Fe oxides@carbon, Process Saf. Environ. Prot., 149 (2021) 35–47.
- D.J.L. Prak, E.A. Milewski, E.E. Jedlicka, A.J. Kersey,
D.W. O’Sullivan, Influence of pH, temperature, salinity, and
dissolved organic matter on the photolysis of 2,4-dinitrotoluene
and 2,6-dinitrotoluene in seawater, Mar. Chem., 157 (2013)
233–241.
- J. Ge, Y. Zhang, Y.-J. Heo, S.-J. Park, Advanced design and
synthesis of composite photocatalysts for the remediation
of wastewater: a review, Catalysts, 9 (2019) 122, doi: 10.3390/
catal9020122.
- A. Shokri, Degradation of 4-chlorophenol in aqueous media
thru UV/persulfate method by artificial neural network and
full factorial design method, Int. J. Environ. Anal. Chem., (2020)
1–15, doi:10.1080/03067319.2020.1791328.
- S. Jorfi, B. Kakavandi, H.R. Motlagh, M. Ahmadi,
N. Jaafarzadeh, A novel combination of oxidative degradation
for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@C
as an efficient activator of peroxymonosulfate, Appl. Catal., B,
219 (2017) 216–230.
- A. Shokri, A.H. Joshagani, Using microwave along with
TiO2 for degradation of 4-chloro-2-nitrophenol in aqueous
environment, Russ. J. Appl. Chem., 89 (2016) 1985–1990.
- A. Shokri, K. Mahanpoor, Removal of ortho-toluidine from
industrial wastewater by UV/TiO2 process, J. Chem. Health Res,
63 (2016) 213–223.
- M.H. Mahmoudian, M. Fazlzadeh, M.H. Niari, A. Azari,
E.C. Lima, A novel silica supported chitosan/glutaraldehyde
as an efficient sorbent in solid phase extraction coupling with
HPLC for the determination of Penicillin G from water and
wastewater samples, Arabian J. Chem., 13 (2020) 7147–7159.
- A. Shokri, K. Mahanpoor, D. Soodbar, Evaluation of a
modified TiO2 (GO–B–TiO2) photocatalyst for degradation of
4-nitrophenol in petrochemical wastewater by response surface
methodology based on the central composite design, J. Environ.
Chem. Eng., 4 (2016) 585–598.
- S. Nasseri, M.O. Borna, A. Esrafili, R.R. Kalantary, B. Kakavandi,
M. Sillanpää, A. Asadi, Photocatalytic degradation of malathion
using Zn2+-doped TiO2 nanoparticles: statistical analysis and
optimization of operating parameters, Appl. Phys. A, 124 (2018)
1–11.
- M. Gebrezgiabher, G. Gebreslassie, T. Gebretsadik, G. Yeabyo,
F. Elemo, Y. Bayeh, M. Thomas, W. Linert,
A C-doped TiO2/Fe3O4 nanocomposite for photocatalytic dye degradation
under natural sunlight irradiation, J. Compos. Sci., 3 (2019) 75,
doi: 10.3390/jcs3030075.
- M. Ismael, A review and recent advances in solar-to-hydrogen
energy conversion based on photocatalytic water splitting over
doped-TiO2 nanoparticles, Solar Energy, 211 (2020) 522–546.
- J. Rashid, M. Barakat, Y. Ruzmanova, A. Chianese, Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of
2-chlorophenol in simulated wastewater, Environ. Sci. Pollut.
Res., 22 (2015) 3149–3157.
- J. Saien, F. Shahrezaei, Organic pollutants removal from
petroleum refinery wastewater with nanotitania photocatalyst
and UV light emission, Int. J. Photoenergy, 2012 (2012) 703074,
doi: 10.1155/2012/703074.
- B.J. Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh,
S. Ravichandran, R. Yuvakkumar, Ferrimagnetism in cobalt
ferrite (CoFe2O4) nanoparticles, Nano-Struct. Nano-Objects,
14 (2018) 84–91.
- D. Greene, R. Serrano-Garcia, J. Govan, Y.K. Gun’ko, Synthesis
characterization and photocatalytic studies of cobalt ferrite silica-titania nanocomposites, Nanomaterials, 4 (2014)
331–343.
- K. Laohhasurayotin, S. Pookboonmee, D. Viboonratanasri,
W. Kangwansupamonkon, Preparation of magnetic photocatalyst
nanoparticles—TiO2/SiO2/Mn–Zn ferrite—and its
photocatalytic activity influenced by silica interlayer, Mater.
Res. Bull., 47 (2012) 1500–1507.
- A. Shokri, A. Bayat, K. Mahanpoor, Employing Fenton-like
process for the remediation of petrochemical wastewater
through Box–Behnken design method, Desal. Water Treat,
166 (2019) 135–143.
- B. Mirza Hedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili,
R. Norozi, Evaluation of photocatalytic degradation of
2,4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264 (2018)
571–578.
- S. Sumiyyah, A.N. Mohd, A.H. Jawad, R. Schneider, Enhanced
photocatalytic degradation of phenol by immobilized TiO2/dyeloaded
chitosan, Desal. Water Treat., 167 (2019) 190–199.
- S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri,
A. Abbasi, Fabrication and characterization of
Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient
photocatalyst for degradation of organic pollution, J. Energy
Chem., 26 (2017) 17–23.
- Y. Fan, C. Ma, W. Li, Y. Yin, Synthesis and properties of
Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic
method, Mater. Sci. Semicond. Process., 15 (2012) 582–585.
- S. Salamat, H. Younesi, N. Bahramifar, Synthesis of magnetic
core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace
dust for photocatalytic degradation of steel mill wastewater,
RSC Adv., 7 (2017) 19391–19405.
- A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed,
M.R. Khan, Synthesis of Schiff’s base magnetic crosslinked
chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced
adsorption of organic dye: modeling and mechanism study,
Sustainable Chem. Pharm., 20 (2021) 100379, doi: 10.1016/j.
scp.2021.100379.
- A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed,
S. Rangabhashiyam, M.R. Khan, Z.A. ALOthman, Magnetic
chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite:
optimization and adsorptive mechanism of Remazol Brilliant
Blue R dye removal, J. Polym. Environ., 29 (2021) 3932–3947.
- N.N. Abd Malek, A.H. Jawad, A.S. Abdulhameed, K. Ismail,
B. Hameed, New magnetic Schiff’s
base-chitosan-glyoxal/fly
ash/Fe3O4 biocomposite for the removal of anionic azo dye: an
optimized process, Int. J. Biol. Macromol., 146 (2020) 530–539.
- A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Magnetic
multi-walled carbon nanotubes-loaded alginate for treatment
of industrial dye manufacturing effluent: adsorption
modelling and process optimisation by central composite
face-central design, Int. J. Environ. Anal. Chem., (2021) 1–21,
doi:10.1080/03067319.2021.1877279.
- A. Shokri, S. Karimi, Treatment of aqueous solution containing
Acid red 14 using an electro peroxone process and a Box–
Behnken experimental design, Arch. Hyg. Sci., 9 (2020) 48–57.
- M. Kermani, B. Kakavandi, M. Farzadkia, A. Esrafili,
S.F. Jokandan, A. Shahsavani, Catalytic ozonation of high
concentrations of catechol over TiO2@Fe3O4 magnetic core-shell
nanocatalyst: optimization, toxicity and degradation pathway
studies, J. Cleaner Prod., 192 (2018) 597–607.
- S. Nasseri, M.O. Borna, A. Esrafili, R.R. Kalantary, B. Kakavandi,
M. Sillanp, A. Asadi, Photocatalytic degradation of malathion
using Zn2+-doped TiO2 nanoparticles: statistical analysis
and optimization of operating parameters, Appl. Phys. A,
124 (2018) 175–187.
- K.M. Reza, A. Kurny, F. Gulshan, Parameters affecting the
photocatalytic degradation of dyes using TiO2: a review, Appl.
Water Sci., 7 (2017) 1569–1578.
- M. Saghi, A. Shokri, A. Arastehnodeh, M. Khazaeinejad,
A. Nozari, The photo degradation of methyl red in aqueous
solutions by α-Fe2O3/SiO2 nano-photocatalyst, J. Nanoanalysis,
5 (2018) 163–170.
- A.A. Babaei, M. Golshan, B. Kakavandi, A heterogeneous
photocatalytic sulfate radical-based oxidation process for
efficient degradation of 4-chlorophenol using TiO2 anchored on
Fe oxides@carbon, Process Saf. Environ. Prot., 147 (2021) 35–47.
- M. Shaban, M.R. Abukhadra, S.S. Ibrahim, M.G. Shahien,
Photocatalytic degradation and photo-Fenton oxidation of
Congo red dye pollutants in water using natural chromite — response surface optimization, Appl. Water Sci., 7 (2017)
4743–4756.
- A. Shokri, Employing UV/peroxydisulphate (PDS) activated by
ferrous ion for the removal of toluene in aqueous environment:
electrical consumption and kinetic study, Int. J. Environ.
Anal. Chem., (2020) 1–18, doi:10.1080/03067319.2020.1784887.
- S. Sepahvand, M. Bahrami, N. Fallah, Photocatalytic degradation
of 2,4-DNT in simulated wastewater by magnetic CoFe2O4/SiO2/TiO2 nanoparticles, Environ. Sci. Pollut. Res., (2021) 1–12,
doi:10.1007/s11356-021-13690-3.