References

  1. H.R. Pouretedal, Visible photocatalytic activity of co-doped TiO2/Zr,N nanoparticles in wastewater treatment of nitrotoluene samples, J. Alloys Compd., 735 (2018) 2507–2511.
  2. M. Rostami, H. Mazaheri, A. Hassani Joshaghani, A. Shokri, Using experimental design to optimize the photo-degradation of p-nitro toluene by nano-TiO2 in synthetic wastewater, Int. J. Eng., 32 (2019) 1074–1081.
  3. M. Rostami, A. Hassani Joshaghani, H. Mazaheri, A. Shokri, Photo-degradation of p-nitro toluene using modified bentonite based nano-TiO2 photocatalyst in aqueous solution, Int. J. Eng., 34 (2021) 756–762.
  4. G.K.K. Reddy, M. Sarvajith, Y. Nancharaiah, V. Venugopalan, 2,4-Dinitrotoluene removal in aerobic granular biomass sequencing batch reactors, Int. Biodeterior. Biodegrad., 119 (2017) 56–65.
  5. J. Huang, G. Ning, F. Li, G.D. Sheng, Biotransformation of 2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1 under anaerobic conditions, Bioresour. Technol., 180 (2015) 200–206.
  6. D. Kundu, C. Hazra, A. Chaudhari, Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway, RSC Adv., 5 (2015) 38818–38829.
  7. A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Integrated fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: multicriteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions, Int. J. Environ. Anal. Chem., (2020) 1–16, doi: 10.1080/03067319.2020.1828395.
  8. A. Azari, M. Yeganeh, M. Gholami, M. Salari, The superior adsorption capacity of 2,4-dinitrophenol under ultrasoundassisted magnetic adsorption system: modeling and process optimization by central composite design, J. Hazard. Mater., 418 (2021) 126348, doi: 10.1016/j.jhazmat.2021.126348
  9. A.A. Babaei, M. Golshan, B. Kakavandi, A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon, Process Saf. Environ. Prot., 149 (2021) 35–47.
  10. D.J.L. Prak, E.A. Milewski, E.E. Jedlicka, A.J. Kersey, D.W. O’Sullivan, Influence of pH, temperature, salinity, and dissolved organic matter on the photolysis of 2,4-dinitrotoluene and 2,6-dinitrotoluene in seawater, Mar. Chem., 157 (2013) 233–241.
  11. J. Ge, Y. Zhang, Y.-J. Heo, S.-J. Park, Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: a review, Catalysts, 9 (2019) 122, doi: 10.3390/ catal9020122.
  12. A. Shokri, Degradation of 4-chlorophenol in aqueous media thru UV/persulfate method by artificial neural network and full factorial design method, Int. J. Environ. Anal. Chem., (2020) 1–15, doi:10.1080/03067319.2020.1791328.
  13. S. Jorfi, B. Kakavandi, H.R. Motlagh, M. Ahmadi, N. Jaafarzadeh, A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@C as an efficient activator of peroxymonosulfate, Appl. Catal., B, 219 (2017) 216–230.
  14. A. Shokri, A.H. Joshagani, Using microwave along with TiO2 for degradation of 4-chloro-2-nitrophenol in aqueous environment, Russ. J. Appl. Chem., 89 (2016) 1985–1990.
  15. A. Shokri, K. Mahanpoor, Removal of ortho-toluidine from industrial wastewater by UV/TiO2 process, J. Chem. Health Res, 63 (2016) 213–223.
  16. M.H. Mahmoudian, M. Fazlzadeh, M.H. Niari, A. Azari, E.C. Lima, A novel silica supported chitosan/glutaraldehyde as an efficient sorbent in solid phase extraction coupling with HPLC for the determination of Penicillin G from water and wastewater samples, Arabian J. Chem., 13 (2020) 7147–7159.
  17. A. Shokri, K. Mahanpoor, D. Soodbar, Evaluation of a modified TiO2 (GO–B–TiO2) photocatalyst for degradation of 4-nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design, J. Environ. Chem. Eng., 4 (2016) 585–598.
  18. S. Nasseri, M.O. Borna, A. Esrafili, R.R. Kalantary, B. Kakavandi, M. Sillanpää, A. Asadi, Photocatalytic degradation of malathion using Zn2+-doped TiO2 nanoparticles: statistical analysis and optimization of operating parameters, Appl. Phys. A, 124 (2018) 1–11.
  19. M. Gebrezgiabher, G. Gebreslassie, T. Gebretsadik, G. Yeabyo, F. Elemo, Y. Bayeh, M. Thomas, W. Linert,
    A C-doped TiO2/Fe3O4 nanocomposite for photocatalytic dye degradation under natural sunlight irradiation, J. Compos. Sci., 3 (2019) 75, doi: 10.3390/jcs3030075.
  20. M. Ismael, A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles, Solar Energy, 211 (2020) 522–546.
  21. J. Rashid, M. Barakat, Y. Ruzmanova, A. Chianese, Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater, Environ. Sci. Pollut. Res., 22 (2015) 3149–3157.
  22. J. Saien, F. Shahrezaei, Organic pollutants removal from petroleum refinery wastewater with nanotitania photocatalyst and UV light emission, Int. J. Photoenergy, 2012 (2012) 703074, doi: 10.1155/2012/703074.
  23. B.J. Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles, Nano-Struct. Nano-Objects, 14 (2018) 84–91.
  24. D. Greene, R. Serrano-Garcia, J. Govan, Y.K. Gun’ko, Synthesis characterization and photocatalytic studies of cobalt ferrite silica-titania nanocomposites, Nanomaterials, 4 (2014) 331–343.
  25. K. Laohhasurayotin, S. Pookboonmee, D. Viboonratanasri, W. Kangwansupamonkon, Preparation of magnetic photocatalyst nanoparticles—TiO2/SiO2/Mn–Zn ferrite—and its photocatalytic activity influenced by silica interlayer, Mater. Res. Bull., 47 (2012) 1500–1507.
  26. A. Shokri, A. Bayat, K. Mahanpoor, Employing Fenton-like process for the remediation of petrochemical wastewater through Box–Behnken design method, Desal. Water Treat, 166 (2019) 135–143.
  27. B. Mirza Hedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, R. Norozi, Evaluation of photocatalytic degradation of 2,4-dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264 (2018) 571–578.
  28. S. Sumiyyah, A.N. Mohd, A.H. Jawad, R. Schneider, Enhanced photocatalytic degradation of phenol by immobilized TiO2/dyeloaded chitosan, Desal. Water Treat., 167 (2019) 190–199.
  29. S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, Fabrication and characterization of
    Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution, J. Energy Chem., 26 (2017) 17–23.
  30. Y. Fan, C. Ma, W. Li, Y. Yin, Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method, Mater. Sci. Semicond. Process., 15 (2012) 582–585.
  31. S. Salamat, H. Younesi, N. Bahramifar, Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater, RSC Adv., 7 (2017) 19391–19405.
  32. A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed, M.R. Khan, Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: modeling and mechanism study, Sustainable Chem. Pharm., 20 (2021) 100379, doi: 10.1016/j. scp.2021.100379.
  33. A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed, S. Rangabhashiyam, M.R. Khan, Z.A. ALOthman, Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of Remazol Brilliant Blue R dye removal, J. Polym. Environ., 29 (2021) 3932–3947.
  34. N.N. Abd Malek, A.H. Jawad, A.S. Abdulhameed, K. Ismail, B. Hameed, New magnetic Schiff’s
    base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: an optimized process, Int. J. Biol. Macromol., 146 (2020) 530–539.
  35. A. Azari, R. Nabizadeh, A.H. Mahvi, S. Nasseri, Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: adsorption modelling and process optimisation by central composite face-central design, Int. J. Environ. Anal. Chem., (2021) 1–21, doi:10.1080/03067319.2021.1877279.
  36. A. Shokri, S. Karimi, Treatment of aqueous solution containing Acid red 14 using an electro peroxone process and a Box– Behnken experimental design, Arch. Hyg. Sci., 9 (2020) 48–57.
  37. M. Kermani, B. Kakavandi, M. Farzadkia, A. Esrafili, S.F. Jokandan, A. Shahsavani, Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: optimization, toxicity and degradation pathway studies, J. Cleaner Prod., 192 (2018) 597–607.
  38. S. Nasseri, M.O. Borna, A. Esrafili, R.R. Kalantary, B. Kakavandi, M. Sillanp, A. Asadi, Photocatalytic degradation of malathion using Zn2+-doped TiO2 nanoparticles: statistical analysis and optimization of operating parameters, Appl. Phys. A, 124 (2018) 175–187.
  39. K.M. Reza, A. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7 (2017) 1569–1578.
  40. M. Saghi, A. Shokri, A. Arastehnodeh, M. Khazaeinejad, A. Nozari, The photo degradation of methyl red in aqueous solutions by α-Fe2O3/SiO2 nano-photocatalyst, J. Nanoanalysis, 5 (2018) 163–170.
  41. A.A. Babaei, M. Golshan, B. Kakavandi, A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon, Process Saf. Environ. Prot., 147 (2021) 35–47.
  42. M. Shaban, M.R. Abukhadra, S.S. Ibrahim, M.G. Shahien, Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite — response surface optimization, Appl. Water Sci., 7 (2017) 4743–4756.
  43. A. Shokri, Employing UV/peroxydisulphate (PDS) activated by ferrous ion for the removal of toluene in aqueous environment: electrical consumption and kinetic study, Int. J. Environ. Anal. Chem., (2020) 1–18, doi:10.1080/03067319.2020.1784887.
  44. S. Sepahvand, M. Bahrami, N. Fallah, Photocatalytic degradation of 2,4-DNT in simulated wastewater by magnetic CoFe2O4/SiO2/TiO2 nanoparticles, Environ. Sci. Pollut. Res., (2021) 1–12,
    doi:10.1007/s11356-021-13690-3.