References

  1. Y. Wang, D. Yang, S. Li, M. Chen, L. Guo, J. Zhou, Ru/hierarchical HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky aromatic VOCs elimination, Microporous Mesoporous Mater., 258 (2018) 17–25.
  2. J. Du, Y. Li, Z. Miao, Difunctional adsorbents Ni/ZnOHZSM- 5 on adsorption desulfurization and aromatization of olefin reaction, Trans. Tianjin Univ., 25 (2019) 143–151.
  3. H. Zhao, Sh. Jia, J. Cheng, X. Tang, M. Zhang, H. Yan, W. Ai, Experimental investigations of composite adsorbent 13X/CaCl2 on an adsorption cooling system, Appl. Sci., 7 (2017) 620, doi: 10.3390/app7060620.
  4. S. Rajabi, A. Nasiri, M. Hashemi, Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation, Chemosphere, 286 (2022) 131872, doi: 10.1016/j. chemosphere.2021.131872.
  5. H. Shirzadi, A. Nezamzadeh-Ejhieh, An efficient modified zeolite for simultaneous removal of Pb(II) and Hg(II) from aqueous solution, J. Mol. Liq., 230 (2017) 221–229.
  6. I. Uogintė, G. Lujanienė, K. Mažeika, Study of Cu(II), Co(II), Ni(II) and Pb(II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent, J. Hazard. Mater., 369 (2019) 226–235.
  7. N. Arancibia-Miranda, S.E. Baltazar, A. García, D. Muñoz-Lira, P. Sepúlveda, M.A. Rubio, D. Altbir, Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution, J. Hazard. Mater., 301 (2016) 371–380.
  8. M.K. Doula, A. Dimirkou, Use of an iron-overexchanged clinoptilolite for the removal of Cu2+ ions from heavily contaminated drinking water samples, J. Hazard. Mater., 151 (2008) 738–745.
  9. A. Takdastan, N. Mehrdadi, A. Torabian, A.A. Azimi, G.N. Bidhendi, Investigation of excess biological sludge reduction in sequencing bach reactor, Asian J. Chem., 21 (2009) 2419–2427.
  10. M. Ahmadi, S. Jarfi, A. Takdastan, N. Jafarzadeh, Study of efficiency of natural clinoptilolite zeolite in cadmium removal from aqueous solutions and determination of adsorption isotherms, J. Ilam. Univ. Med. Sci., 23 (2015) 95–102.
  11. S. Singh, K.C. Barick, D. Bahadur, Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes, Nanomater. Nanotechnol., 3 (2013) 3–20.
  12. M. Malakootian, H. Mahdizadeh, M. Khavari, A. Nasiri, M.A. Gharaghani, M. Khatami, E. Sahle-Demessie,
    R.S. Varma, Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions, J. Environ. Chem. Eng., 8 (2020) 103553, doi: 10.1016/j. jece.2019.103553.
  13. M. Malakootian, A. Nasiri, A.N. Alibeigi, H. Mahdizadeh, M.A. Gharaghani, Synthesis and stabilization of ZnO nanoparticles on a glass plate to study the removal efficiency of acid red 18 by hybrid advanced oxidation process (ultraviolet/ZnO/ultrasonic), Desal. Water Treat., 170 (2019) 325–336.
  14. M. Malakootian, A. Nasiri, M. Khatami, H. Mahdizadeh, P. Karimi, M. Ahmadian, N. Asadzadeh, M.R. Heidari, Experimental data on the removal of phenol by electro-H2O2 in presence of UV with response surface methodology, MethodsX, 6 (2019) 1188–1193.
  15. A. Nasiri, M. Malakootian, M.R. Heidari, S.N. Asadzadeh, CoFe2O4@methylcelloluse as a new magnetic nano biocomposite for sonocatalytic degradation of Reactive Blue 19, J. Polym. Environ., 29 (2021) 2660–2675.
  16. S. Rajabi, A. Nasiri, M. Hashemi, Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation, Chemosphere, 286 (2022) 131872, doi: 10.1016/j.chemosphere.2021.131872.
  17. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M. Faraji, A microwave assisted method to synthesize
    nanoCoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation, MethodsX,
    6 (2019) 1557–1563.
  18. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M.A. Gharaghani, A. Asadipour, New magnetic nanobiocomposite CoFe2O4@methylcellulose: facile synthesis, characterization, and photocatalytic degradation of metronidazole, J. Mater. Sci. - Mater. Electron., 30 (2019) 8595–8610.
  19. F. Tamaddon, A. Nasiri, G. Yazdanpanah, Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite, MethodsX, 7 (2020) 74–81.
  20. S. Gunatilake, Methods of removing heavy metals from industrial wastewater, Methods, 1 (2015) 12–18.
  21. M. Malakootian, Z. Darabi-Fard, N. Amirmahani, A. Nasiri, Evaluation of arsenic, copper, lead, cadmium, and iron concentration in drinking water resources of central and Southern Bardsir plain, Iran, in 2014, J. Kerman Univ. Med. Sci., 22 (2015) 542–554 (in Persian).
  22. M. Malakootian, M. Hashemi, A. Toolabi, A. Nasiri, Investigation of nickel removal using poly(amidoamine) generation 4 dendrimer (PAMAM G4) from aqueous solutions, J. Eng. Res. (Kuwait), 6 (2018) 13–23.
  23. N. Javid, A. Nasiri, M. Malakootian, Removal of nonylphenol from aqueous solutions using carbonized date pits modified with ZnO nanoparticles, Desal. Water Treat., 141 (2019) 140–148.
  24. A. Nasiri, M. Malakootian, M.A. Shiri, G. Yazdanpanah, M. Nozari, CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology, J. Polym. Res., 28 (2021), doi: 10.1007/s10965-021-02540-y.
  25. M. Malakootian, A. Nasiri, H. Mahdizadeh, Metronidazole adsorption on CoFe2O4/activated carbon@chitosan as a new magnetic biocomposite: modelling, analysis, and optimization by response surface methodology, Desal. Water Treat., 164 (2019) 215–227.
  26. A. Gaffer, A.A. Al Kahlawy, D. Aman, Magnetic zeolite-natural polymer composite for adsorption of chromium(VI), Egypt. J. Pet., 26 (2017) 995–999.
  27. O. Eljamal, T. Shubair, A. Tahara, Y. Sugihara, N. Matsunaga, Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions, J. Mol. Liq., 277 (2019) 613–623.
  28. A. Loiola, J. Andrade, J. Sasaki, L. Da Silva, Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener, J. Colloid Interface Sci., 367 (2012) 34–39.
  29. D.W. Breck, Z.M. Sieves, Structure, Chemistry and Use, Zeolite Molecular Sieves, Wiley, New York, 1974.
  30. H. Liu, S. Peng, L. Shu, T. Chen, T. Bao, R.L. Frost, Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+, Chemosphere, 91 (2013) 1539–1546.
  31. G.M. Haggerty, R.S. Bowman, Sorption of chromate and other inorganic anions by organo-zeolite, Environ. Sci. Technol., 28 (1994) 452–458.
  32. E. Sullivan, J. Carey, R. Bowman, Thermodynamics of cationic surfactant sorption onto natural clinoptilolite,
    J. Colloid Interface Sci., 206 (1998) 369–380.
  33. Y. Zeng, H. Woo, G. Lee, J. Park, Adsorption of Cr(VI) on hexadecylpyridinium bromide (HDPB) modified natural zeolites, Microporous Mesoporous Mater., 130 (2010) 83–91.
  34. H. Faghihian, R.S. Bowman, Adsorption of chromate by clinoptilolite exchanged with various metal cations, Water Res., 39 (2005) 1099–1104.
  35. P. Ambrozova, J. Kynicky, T. Urubek, V.D. Nguyen, Synthesis and modification of clinoptilolite, Molecules, 22 (2017) 1107, doi: 10.3390/molecules22071107.
  36. K. Murakami, T. Wajima, T. Kato, K. Sugawara, T. Sugawara, Thermodynamic and kinetic studies on Cs+- and Sr2+-exchange in natural zeolite from Akita, Japan, Toxicol. Environ. Chem., 91 (2009) 1023–1034.
  37. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Colloid Interface Sci., 393 (2013) 445–451.
  38. L.R. Rad, A. Momeni, B.F. Ghazani, M. Irani, M. Mahmoudi, B. Noghreh, Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent, Chem. Eng. J., 256 (2014) 119–127.
  39. R.I. Yousef, B. El-Eswed, H. Ala’a, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
  40. H. RunPing, Z. Lina, Z. Xin, X. YanFang, X. Feng, L. YinLi, W. Yu, Characterization and properties
    of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column,
    Chem. Eng. J., 149 (2009) 123–131.
  41. J. Bauer, R. Herrmann, W. Mittelbach, W. Schwieger, Zeolite/aluminum composite adsorbents for application in adsorption refrigeration, Int. J. Energy Res., 33 (2009) 1233–1249.
  42. O. Falyouna, O. Eljamal, I. Maamoun, A. Tahara, Y. Sugihara, Magnetic zeolite synthesis for efficient removal of cesium in a lab-scale continuous treatment system, J. Colloid Interface Sci., 571 (2020) 66–79.
  43. Z. Zhao, X. Cui, J. Ma, R. Li, Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents, Int. J. Greenhouse Gas Control, 1 (2007) 355–359.
  44. R. Han, W. Zou, H. Li, Y. Li, J. Shi, Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite, J. Hazard. Mater., 137 (2006) 934–942.
  45. L.C. Oliveira, D.I. Petkowicz, A. Smaniotto, S.B. Pergher, Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water, Water Res., 38 (2004) 3699–3704.
  46. A. Takahashi, R.T. Yang, C.L. Munson, D. Chinn, Cu(I)−Y-zeolite as a superior adsorbent for diene/olefin separation, Langmuir, 17 (2001) 8405–8413.
  47. B. Huang, M. Lu, D. Wang, Y. Song, L. Zhou, Versatile magnetic gel from peach gum polysaccharide for efficient adsorption of Pb2+ and Cd2+ ions and catalysis, Carbohydr. Polym., 181 (2018) 785–792.
  48. S. Aslıyüce, N. Bereli, A. Topçu, P.W. Ramteke, A. Denizli, Indian saffron – turmeric (Curcuma longa) embedded supermacroporous cryogel discs for heavy metal removal, Biointerface Res. Appl. Chem., 9 (2019) 4356–4361.
  49. J. Ifthikar, J. Wang, Q. Wang, T. Wang, H. Wang, A. Khan, A. Jawad, T. Sun, X. Jiao, Z. Chen, Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications, Bioresour. Technol., 238 (2017) 399–406.
  50. H. Wang, Y. Liu, J. Ifthikar, L. Shi, A. Khan, Z. Chen, Z. Chen, Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: influence of atmosphere in heat treatment, Bioresour. Technol., 256 (2018) 269–276.
  51. J. Ifthikar, X. Jiao, A. Ngambia, T. Wang, A. Khan, A. Jawad, Q. Xue, L. Lui, Z. Chen, Facile one-pot synthesis of sustainable carboxymethyl chitosan – sewage sludge biochar for effective heavy metal chelation and regeneration, Bioresour. Technol., 262 (2018) 22–31.
  52. H. Wang, S. Wang, Z. Chen, X. Zhou, J. Wang, Z. Chen, Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and efficiently capture Pb2+ and CrO42- from electroplating wastewater, Bioresour. Technol., 306 (2020) 123118, doi: 10.1016/j.biortech.2020.123118.
  53. H. Wang, J. Cai, Z. Liao, A. Jawad, J. Ifthikar, Z. Chen, Z. Chen, Black liquor as biomass feedstock to prepare zerovalent iron embedded biochar with red mud for Cr(VI) removal: mechanisms insights and engineering practicality, Bioresour. Technol., 311 (2020) 123553, doi: 10.1016/j.biortech. 2020.123553.
  54. G.G. Aregay, A. Jawad, Y. Du, A. Shahzad, Z. Chen, Efficient and selective removal of chromium(VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes, J. Mol. Liq., 294 (2019) 111532, doi: 10.1016/j.molliq.2019.111532.
  55. T. Kamal, Y. Anwar, Sh. Bahadar Khan, M. Tariq Saeed Chani, A.M. Asiri, Dye adsorption and bactericidal properties of TiO2/chitosan coating layer, Carbohydr. Polym., 148 (2016) 153–160.
  56. T. Kamal, M. Ul-Islam, Sh. Bahadar Khan, A.M. Asiri, Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer, Int. J. Biol. Macromol., 81 (2018) 584–590.
  57. Sh. Bahadar Khan, F. Ali, T. Kamal, Y. Anwar, A.M. Asiri, J. Seo, CuO embedded chitosan spheres as antibacterial adsorbent for dyes, Int. J. Biol. Macromol., 88 (2016) 113–119.
  58. Sh. Ali Khan, Sh. Bahadar Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes, Int. J. Biol. Macromol., 91 (2016) 744–751.
  59. I. Ahmad, Sh. Bahadar Khan, T. Kamal, A.M. Asiri, Visible light activated degradation of organic pollutants using zinc–iron selenide, J. Mol. Liq., 229 (2017) 429–435.
  60. Sh. Bahadar Khan, Sh. Ali Khan, H.M. Marwani, E.M. Bakhsh, Y. Anwar, T. Kamal, A.M. Asiri, K. Akhtar, Anti-bacterial PEScellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol, RSC Adv., 6 (2016) 110077–110090.
  61. T. Benhalima, H. Ferfera-Harrar, Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue, Int. J. Biol. Macromol., 132 (2019) 126–141.
  62. M. Malakootian, A. Nasiri, H. Mahdizadeh, Preparation of CoFe2O4/activated carbon@chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions, J. Water Sci. Technol., 78 (2018) 2158–2170.
  63. F. Aeenjan, V. Javanbakht, Methylene blue removal from aqueous solution by magnetic clinoptilolite/chitosan/EDTA nanocomposite, Res. Chem. Intermed., 44 (2018) 1459–1483.
  64. S. Kim, T.G. Lee, Removal of Cr(VI) from aqueous solution using functionalized poly(GMA-co-EGDMA)-graft-poly(allylamine), React. Funct. Polym., 134 (2019) 133–140.
  65. I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara, Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater, Ecotoxicol. Environ. Saf., 200 (2020) 110773, doi:10.1016/j.ecoenv.2020.110773.
  66. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Colloid Interface Sci., 393 (2013) 445–451.
  67. F. Veisi, A. Veisi, Modeling bisphenol a removal from aqueous solution by activated carbon and eggshell,
    J. Mazandaran Univ. Med. Sci., 22 (2013) 129–138.
  68. S. Venkateswarlu, B.N. Kumar, B. Prathima, Y. SubbaRao, N.V.V. Jyothi, A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb(II) from aqueous environment, Arabian J. Chem., 12 (2019) 588–596.
  69. I. Maamoun, O. Eljamal, R. Eljamal, O. Falyouna, Y. Sugihara, Promoting aqueous and transport characteristics of highly reactive nanoscale zero valent iron via different layered hydroxide coatings, Appl. Surf. Sci., 506 (2020) 145018, doi: 10.1016/j.apsusc.2019.145018.
  70. I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara, Stimulating effect of magnesium hydroxide on aqueous characteristics of iron nanocomposites, Water Sci. Technol., 80 (2019) 1996–2002.
  71. J.H. Cheong, K.J. Lee, Removal of Co2+ ions from aqueous solution by ferrite process, Sep. Sci. Technol., 31 (1996) 1137–1160.
  72. E.A. Mehrizi, M. Sadani, M. Karimaei, E. Ghahramani, K. Ghadiri, M.S. Taghizadeh, Isotherms and kinetics of lead and cadmium uptake from the waste leachate by natural absorbent, World Appl. Sci. J., 15 (2011) 1678–1686.
  73. R. Eljamal, O. Eljamal, I. Maamoun, G. Yilmaz, Y. Sugihara, Enhancing the characteristics and reactivity of nZVI: polymers effect and mechanisms, J. Mol. Liq., 315 (2020) 113714, doi: 10.1016/j.molliq.2020.113714.
  74. M. Zendehdel, M. Ramezani, B. Shoshtari-Yeganeh, G. Cruciani, A. Salmani, Simultaneous removal of Pb(II), Cd(II) and bacteria from aqueous solution using aminofunctionalized Fe3O4/NaP zeolite nanocomposite, Environ. Technol., 40 (2019) 3689–3704.
  75. A. Shoukat, F. Wahid, T. Khan, M. Siddique, S. Nasreen, G. Yang, M. Wajid Ullah, R. Khan, Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution, Int. J. Biol. Macromol., 129 (2019) 965–971.
  76. M. Yahya, K. Obayomi, M. Abdulkadir, Y. Iyaka, A. Olugbenga, Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium, Water Sci. Eng., 13 (2020) 202–213.