References

  1. A. Shokuhfar, A. Zare-Shahabadi, A.-A. Atai, S. Ebrahimi-Nejad, M. Termeh, Predictive modeling of creep in polymer/layered silicate nanocomposites, Polym. Test., 31 (2012) 345–354.
  2. P. Kiliaris, C.D. Papaspyrides, Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy, Prog. Polym. Sci., 35 (2010) 902–958.
  3. F. Uddin, Montmorillonite: An Introduction to Properties and Utilization, M. Zoveidavianpoor, Ed., Current Topics in the Utilization of Clay in Industrial and Medical Applications, IntechOpen, 2018, p. 3:23, doi:10.5772/intechopen.77987. Available at: https://www.intechopen.com/chapters/61845
  4. N.P. Shetti, D.S. Nayak, K.R Reddy and T.M. Aminabihavi, Chapter 10 – Graphene–Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors, A. Pandikumar, P. Rameshkumar, Eds., Graphene-Based Electrochemical Sensors for Biomolecules: Micro and Nano Technologies, Elsevier, Radarweg 29, P.O. Box: 211, 1000 AE Amsterdam, Netherlands, 2019, pp. 235–274.
  5. K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Adv. Colloid Interface Sci., 140 (2008) 114–131.
  6. M. Auta, B.H. Hameed, Chitosan–clay composite as highly effective and low-cost adsorbent for batch and
    fixed-bed adsorption of methylene blue, Chem. Eng. J., 237 (2014) 352–361.
  7. Md. R. Awual, M. Ismael, T. Yaita, S.A. El-Safty, H. Shiwaku, Y. Okamoto, S. Suzuki, Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent, Chem. Eng. J., 222 (2013) 67–76.
  8. M. Auta, B.H. Hameed, Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes, Colloids Surf., B, 105 (2013) 199–206.
  9. R.-S. Norouzian, M.M. Lakouraj, Preparation and heavy metal ion adsorption behavior of novel supermagnetic nanocomposite of hydrophilic thiacalix[4]arene self-doped polyaniline: conductivity, isotherm, and kinetic study, Adv. Polym. Technol., 36 (2017) 107–119.
  10. N.M. Ismail, A.F. Ismail, A. Mustafa, T. Matsuura, T. Soga, K. Nagata, T. Asaka, Qualitative and quantitative analysis of intercalated and exfoliated silicate layers in asymmetric polyethersulfone/cloisite15A® mixed matrix membrane for CO2/CH4 separation, Chem. Eng. J., 268 (2015) 371–383.
  11. E.F. Unuabonah, A. Taubert, Clay–polymer nanocomposites (CPNs): adsorbents of the future for water treatment, Appl. Clay Sci., 99 (2014) 83–92.
  12. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol. – ACS, 50 (2016) 7290–7304.
  13. S. Sharaf, A. Aslam, M. Rabbani, A. Sharf, M. Ijaz, A. Anjum, N. Hussain, Toxico-pathological effects of heavy metals from industrial drainage wastewater on vital organs of small ruminants in Lahore, Environ. Sci. Pollut. Res., 28 (2020) 3533–3543.
  14. I. García-Díaz, F.A. López, F.J. Alguaci, Carbon nanofibers: a new adsorbent for copper removal from wastewater, Metals (Basel), 8 (2018) 914–927.
  15. J. Mishra, R. Saini, D. Singh, Review paper on removal of heavy metal ions from industrial waste water effluent, IOP Conf. Ser.: Mater. Sci. Eng., 1168 (2021) 012027.
  16. S.A. Al-Saydeh, M.H. El-Naas, S.J. Zaidi, Copper removal from industrial wastewater: a comprehensive review,
    J. Ind. Eng. Chem., 56 (2017) 35–44.
  17. H. Aydın, Y. Bulut, C. Yerlikaya, Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents, J. Environ. Manage., 87 (2008) 37–45.
  18. S. Andrejkovičová, A. Sudagar, J. Rocha, C. Patinha, W. Hajjaji, E. Ferreira da Silva, A. Velosa, A. Rocha, The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers, Appl. Clay Sci., 126 (2016) 141–152.
  19. O. Ferrer, O. Gibert, J.L. Cortina, Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure, Water Res., 103 (2016) 256–263.
  20. Y.C. Xu, Z.X. Wang, X.Q. Cheng, Y.C. Xiao, L. Shao, Positively charged nanofiltration membranes via economically musselsubstance- simulated co-deposition for textile wastewater treatment, Chem. Eng. J., 303 (2016) 555–564.
  21. Y. Dong, J. Liu, M. Sui, Y. Qu, J.J. Ambuchi, H. Wang, Y. Feng, A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination,
    J. Hazard. Mater., 321 (2017) 307–315.
  22. D. Kanakaraju, S. Ravichandar, Y.C. Lim, Combined effects of adsorption and photocatalysis by hybrid
    TiO2/ZnO-calcium alginate beads for the removal of copper, J. Environ. Sci., 55 (2017) 214–223.
  23. R. Davarnejad, P. Panahi, Cu(II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology, Sep. Purif. Technol., 158 (2016) 286–262.
  24. N.B. Hafizah, Adsorption of copper(II) from aqueous solution using tea (Camellia sinensis) leaf waste, Mater. Sci. Forum, 997 (2020) 113–120.
  25. S.S. Al Moharbi, M. Geetha Devi, B.M. Sangeetha, S. Jahan, Studies on the removal of copper ions from industrial effluent by Azadirachta indica powder, Appl. Water Sci., 10 (2020) 23,
    doi: 10.1007/s13201-019-1100-z.
  26. N.E. Dávila-Guzmán, Y.B. Medina-Almaguer, M.A. Reyes-González, M. Loredo-Cancino, S. Pioquinto-García,
    D.A. De Haro-Del Rio, M.A. Garza-Navarro, E. Hernández-Fernández, Microwave-assisted synthesis of
    trans-cinnamic acid for highly efficient removal of copper from aqueous solution, ACS Omega, 5 (2020) 317–326.
  27. M. Moubarek, H. Kadda, H.M. Kaid, Lignocellulosic fraction of the pericarps of the acorns of Quercus suber and Quercus ilex: isolation, characterization, and biosorption studies in the removal of copper from aqueous solutions, Pol. J. Chem. Technol., 21 (2019) 40–47.
  28. R.O. Adeeyo, J.N. Edokpayi, O.S. Bello, A.O. Adeeyo, J.O. Odiyo, Influence of selective conditions on various composite sorbents for enhanced removal of copper(II) ions from aqueous environments, Int. J. Environ. Res., 16 (2019) 4596–4613.
  29. R. Ansari, Application of polyaniline and its composites for adsorption/recovery of chromium(VI) from aqueous solutions, Acta Chim. Slov., 53 (2006) 88–94.
  30. S. Raja, M. Deepa, Synthesis and characterization of polyanilinecopper( II) oxide nanocomposite by wet chemical route, Indian J. Adv. Chem. Sci., 3 (2015) 198–203.
  31. V. Babel, B.L. Hiran, A review on polyaniline composites: synthesis, characterization, and applications, Polym. Compos., 42 (2021) 3142–3157.
  32. H. Hajjaoui, A. Soufi, W. Boumya, M. Abdennouri, N. Barka, Polyaniline/nanomaterial composites for the removal of heavy metals by adsorption: a review, J. Compos. Sci., 5 (2021) 233–255.
  33. K. Rajakumar, S. Dinesh Kirupha, S. Sivanesan, R.L. Sai, Effective removal of heavy metal ions using Mn2O3 doped polyaniline nanocomposite, J. Nanosci. Nanotechnol., 14 (2014) 2937–2946.
  34. R. Khalili, H. Eisazadeh, Preparation and characterization of polyaniline/Sb2O3 nanocomposite and its application for removal of Pb(II) from aqueous media, Int. J. Eng., 27 (2013) 239–246.
  35. S. Piri, F. Piri, B. Rajabi, S. Ebrahimi, A. Zamani, M.R. Yaftian, In situ one-pot electrochemical synthesis of aluminum oxide/polyaniline nanocomposite; characterization and its adsorption properties towards some heavy metal ions, J. Chin. Chem. Soc., 62 (2015) 1045–1052.
  36. A. Hsini, A. Essekri, N. Aarab, M. Laabd, A.A. Addi, R. Lakhmiri, A. Albourine, Elaboration of novel
    polyaniline@almond shell biocomposite for effective removal of hexavalent chromium ions and Orange G dye from aqueous solutions, Environ. Sci. Pollut. Res., 27 (2020) 15245–15258.
  37. S. Majumdar, A. Baishya, D. Mahanta, Kinetic and equilibrium modeling of anionic dye adsorption on polyaniline emeraldine salt: batch and fixed bed column studies, Fibers Polym., 20 (2019) 1226–1235.
  38. M. Laabd, H. Chafai, A. Essekri, M. Elamine, S.A. Al-Muhtaseb, R. Lakhmiri, A. Albourine, Single and
    multi-component adsorption of aromatic acids using an eco-friendly polyanilinebased biocomposite, Sustainable Mater. Technol., 12 (2017) 35–43.
  39. L. Sun, L. Zhan, Y. Shi, L. Chu, G. Ge, Z. He, Microemulsion synthesis and electromagnetic wave absorption properties of monodispersed Fe3O4/polyaniline core–shell nanocomposites, Synth. Met., 187 (2014) 102–107.
  40. H. Guo, H. Zhu, H. Lin, J. Zhang, Synthesis of polyaniline/multi-walled carbon nanotube nanocomposites in water/oil microemulsion, Mater. Lett., 62 (2008) 3919–3921.
  41. M.R. Karim, H.W. Lee, I.W. Cheong, S.M. Park, W. Oh, J.H. Yeum, Conducting polyaniline-titanium dioxide nanocomposites prepared by inverted emulsion polymerization, Polym. Polym. Compos., 31 (2008) 83–88.
  42. R. Regueira, R.Y. Suckeveriene, I. Brook, G. Mechrez, R. Tchoudakov, M. Narkis, Investigation of the electromechanical behavior of hybrid polyaniline/graphene nanocomposites fabricated by dynamic interfacial inverse emulsion polymerization, Graphene, 4 (2015) 7–19.
  43. N. Wang, J. Chen, J. Wang, J. Feng, W. Yan, Removal of methylene blue by polyaniline/TiO2 hydrate: adsorption kinetic, isotherm and mechanism studies, Powder Technol., 347 (2019) 93–102.
  44. P. Piromruen, S. Kongparakul, P. Prasassarakich, Synthesis of polyaniline/montmorillonite nanocomposites with an enhanced anticorrosive performance, Prog. Org. Coat., 77 (2014) 691–700.
  45. H.S. Nalwa, Conductive Polymers: Synthesis and Electrical Properties, West Sussex England, John Wiley & Sons, 1997.
  46. Y.D. Liu, F.F. Fang, H.J. Choi and Y. Seo, Fabrication of semiconducting polyaniline/nano-silica nanocomposite particles and their enhanced electrorheological and dielectric characteristics, Colloids Surf., A, 381 (2011) 17–22.
  47. B.N. Narayanan, R. Koodathil, T. Gangadharan, Z. Yaakob, F.K. Saidu, S. Chandralayam, Preparation and characterization of exfoliated polyaniline/montmorillonite nanocomposites, Mater. Sci. Eng., B, 168 (2010) 242–244.
  48. T.J. Pinnavaia, G.W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons, West Sussex-England, 2000.
  49. Q.Y. Soundararajah, B.S.B. Karunarathne, R.M.G. Rajapakse, Montmorillonite polyaniline nanocomposites: preparation, characterization and investigation of mechanical properties, Mater. Chem. Phys., 113 (2009) 850–855.
  50. G. Thakur, A. Singh, I. Singh, Chitosan-montmorillonite polymer composites: formulation and evaluation of sustained release tablets of aceclofenac, Sci. Pharm., 84 (2015) 603–618.
  51. J. Alam, A.K. Shukla, M.A. Ansari, F.A. Ahmed Ali, M. Alhoshan, Dye separation and antibacterial activities of polyaniline thin film-coated poly(phenyl sulfone) membranes, Membranes, 11 (2021) 25–32.
  52. T.S. Anirudhan, S.P. Suchithra, Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acidimmobilized polymer/bentonite composite: kinetics and equilibrium modeling, Chem. Eng. J., 156 (2010) 146–156.
  53. M. Helen Kalavathy, L.R. Miranda, Moringa oleifera—a solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions, Chem. Eng. J., 158 (2010) 188–199.
  54. K. Swayampakula, V.M. Boddu, S.K. Nadavala, K. Abburi, Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent, J. Hazard. Mater., 170 (2009) 680–689.
  55. V.B.H. Dang, H.D. Doan, T. Dang-Vu, A. Lohi, Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw, Bioresour. Technol., 100 (2009) 211–219.
  56. A. Masoumi, M. Ghaemy, A.N. Bakht, Removal of metal ions from water using
    poly(MMA-co-MA)/modified-Fe3O4 magnetic nanocomposite: isotherm and kinetic study, Ind. Eng. Chem. Res. – ACS, 53 (2014) 8188–8197.
  57. Y. Xu, Z. Hao, H. Chen, J. Sun, D. Wang, Preparation of polyacrylonitrile initiated by modified corn starch and adsorption for mercury after modification, Ind. Eng. Chem. Res. – ACS, 53 (2014) 4871–4877.
  58. H.-T. Fan, X.-T. Sun, Z.-G. Zhang, W.-X. Li, Selective removal of lead(II) from aqueous solution
    by an ion-imprinted silica sorbent functionalized with chelating N-donor atoms, J. Chem. Eng. Data, 59 (2014) 2106–2114.
  59. M. Boroumand Jazi, M. Arshadi, M.J. Amiri, A. Gil, Kinetic and thermodynamic investigations of Pb(II) and Cd(II) adsorption on nanoscale organo-functionalized SiO2-Al2O3, J. Colloid Interface Sci., 422 (2014) 16–24.
  60. Y. Zhao, L. Zhan, Z. Xue, K.K. Yusef, H. Hu, M. Wu, Adsorption of Cu(II) and Cd(II) from wastewater by sodium alginate modified materials, J. Chem., 2020 (2020) 5496712, doi: 10.1155/2020/5496712.
  61. H.Z. Mousavi, A. Hosseinifar, V. Jahed, Removal of Cu(II) from wastewater by waste tire rubber ash, J. Serb. Chem. Soc., 75 (2010) 845–853.
  62. P. Phuengphai, T. Singjanusong, N. Kheangkhun, A. Wattanakornsiri, Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents, Water Sci. Eng., 14 (2021) 286–294.
  63. J. Shen, K. Li, Y. Muhammad, N. Zhang, X. Guo, S. Subhan, C. Lan, K. Liu, F. Huang, Removal of Cu(II) ions from simulated wastewater using bagasse pith grafted polyacrylamide copolymer, Chem. Eng. Res. Des., 164 (2020) 361–372.