References
- M. Malakootian, K. Kannan, M. Amiri Gharaghani,
A. Dehdarirad, A. Nasiri, Y.D. Shahamat, H. Mahdizadeh,
Removal of metronidazole from wastewater by Fe/charcoal
micro electrolysis fluidized bed reactor,
J. Environ. Chem. Eng.,
7 (2019) 103457, doi: 10.1016/j.jece.2019.103457.
- G. Liu, Z. Zhu, Y. Yang, Y. Sun, F. Yu, J. Ma, Sorption behavior
and mechanism of hydrophilic organic chemicals to virgin and
aged microplastics in freshwater and seawater, Environ. Pollut.,
246 (2019) 26–33.
- A.C. Singer, H. Shaw, V. Rhodes, A. Hart, Review of
antimicrobial resistance in the environment and its relevance
to environmental regulators, Front. Microbiol., 7 (2016) 1–22,
doi: 10.3389/fmicb.2016.01728.
- M.C. Danner, A. Robertson, V. Behrends, J. Reiss, Antibiotic
pollution in surface fresh waters: occurrence and effects,
Sci. Total Environ., 664 (2019) 793–804.
- Z.N. Garba, I. Bello, A. Galadima, A.Y. Lawal, Optimization of
adsorption conditions using central composite design for the
removal of copper(II) and lead(II) by defatted papaya seed,
Karbala Int. J. Mod. Sci., 2 (2016) 20–28.
- B. Zhang, X. Han, P. Gu, S. Fang, J. Bai, Response surface
methodology approach for optimization of ciprofloxacin
adsorption using activated carbon derived from the residue
of desilicated rice husk, J. Mol. Liq., 238 (2017) 316–325.
- X. Peng, F. Hu, F.L.Y. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption
behavior and mechanisms of ciprofloxacin from aqueous
solution by ordered mesoporous carbon and bamboo-based
carbon, J. Colloid Interface Sci.,
460 (2015) 349–360.
- N. Genç E.C. Dogan, Adsorption kinetics of the antibiotic
ciprofloxacin on bentonite, activated carbon, zeolite, and
pumice, Desal. Water Treat., 53 (2015) 785–793.
- M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo,
M.P. Ormad, Corncobs as a potentially low-cost biosorbent
for sulfamethoxazole removal from aqueous solution, Sep. Sci.
Technol., 55 (2020) 3060–3071.
- D. Balarak, F. Mostafapour, H. Azarpira, Adsorption kinetics
and equilibrium of ciprofloxacin from aqueous solutions using
Corylus avellana (Hazelnut) activated carbon, Br. J. Pharm.
Res., 13 (2016) 1–14.
- W. Duan, W. Xiao, N. Wang, B. Niu, Y. Zheng, Removal of three
fluoroquinolone antibiotics by NaClO2-modified biosorbent
from fruit fiber of C. Procera, J. Nat. Fibers, 17 (2020) 1594–1604.
- M.O. Saeed, K. Azizli, M.H. Isa, M.J.K. Bashir, Application
of CCD in RSM to obtain optimize treatment of POME using
Fenton oxidation process, J. Water Process Eng., 8 (2015)
e7–e16.
- J. Sharma, Sukriti, P. Anand, V. Pruthi, A.S. Chaddha, J. Bhatia,
B.S. Kaith, RSM-CCD optimized adsorbent for the sequestration
of carcinogenic rhodamine-B: kinetics and equilibrium studies,
Mater. Chem. Phys., 196 (2017) 270–283.
- V. Alimohammadi, M. Sedighi, Reduction of TDS in water by
using magnetic multiwalled carbon nanotubes and optimizing
with response surface methodology, J. Environ. Eng., 144 (2018)
04017114, doi:10.1061/(asce)ee.1943-7870.0001328.
- S. Sharifi, R. Nabizadeh, B. Akbarpour, A. Azari, H.R. Ghaffari,
S. Nazmara, B. Mahmoudi, L. Shiri, M. Yousefi, Modeling
and optimizing parameters affecting hexavalent chromium
adsorption from aqueous solutions using Ti-XAD7
nanocomposite: RSM-CCD approach, kinetic, and isotherm
studies, J. Environ. Health Sci. Eng., 17 (2019) 873–888.
- S.J.S. Chelladurai, K. Murugan, A.P. Ray, M. Upadhyaya,
V. Narasimharaj, S. Gnanasekaran, Optimization of process
parameters using response surface methodology: a review,
Mater. Today:. Proc., 37 (2020) 1301–1304.
- M.P. Gomes, J.C.M. de Brito, M.M.L. Carvalho Carneiro,
M.R. Ribeiro da Cunha, Q.S. Garcia, C.C. Figueredo, Responses
of the nitrogen-fixing aquatic fern Azolla to water contaminated
with ciprofloxacin: impacts on biofertilization, Environ.
Pollut., 232 (2018) 293–299.
- A.R. Mahmood, H.H. Al-Haideri, F.M. Hassan, Detection
of antibiotics in drinking water treatment plants in
Baghdad City, Iraq, Adv. Public Health, 2019 (2019) 1–10,
doi: 10.1155/2019/7851354.
- Y. Tang, Q. Chen, W. Li, X. Xie, W. Zhang, X. Zhang, H. Chai,
Y. Huang, Engineering magnetic N-doped porous carbon with
super-high ciprofloxacin adsorption capacity and wide pH
adaptability, J. Hazard. Mater., 388 (2020) 122059, doi: 10.1016/j.
jhazmat.2020.122059.
- S. Sivaselvam, P. Premasudha, C. Viswanathan, N. Ponpandian,
Enhanced removal of emerging pharmaceutical contaminant
ciprofloxacin and pathogen inactivation using morphologically
tuned MgO nanostructures,
J. Environ. Chem. Eng., 8 (2020)
104256, doi: 10.1016/j.jece.2020.104256.
- E.C. Ngeno, V.O. Shikuku, F. Orata, L.D. Baraza, S.J. Kimosop,
Caffeine and ciprofloxacin adsorption from water onto
clinoptilolite: linear isotherms, kinetics, thermodynamic and
mechanistic studies, S. Afr. J. Chem., 72 (2019) 136–142.
- A. Avcı, İ. İnci, N. Baylan, Adsorption of ciprofloxacin
hydrochloride on multiwall carbon nanotube, J. Mol. Struct.,
1206 (2020) 1–7, doi: 10.1016/j.molstruc.2020.127711.
- A. Avcı, İ. İnci, N. Baylan, A comparative adsorption study
with various adsorbents for the removal of ciprofloxacin
hydrochloride from water, Water Air Soil Pollut., 230 (2019),
doi: 10.1007/s11270-019-4315-6.
- S. Yi, B. Gao, Y. Sun, J. Wu, X. Shi, B. Wu, X. Hu, Removal of
levofloxacin from aqueous solution using rice-husk and woodchip
biochars, Chemosphere, 150 (2016) 694–701.
- T.D. Pham, T.T. Bui, V.T. Nguyen, T.K.V. Bui, T.T. Tran,
Q.C. Phan, T.D. Pham, T.H. Hoang, Adsorption of polyelectrolyte
onto nanosilica synthesized from rice husk: characteristics,
mechanisms, and application for antibiotic removal, Polymers
(Basel), 10 (2018), doi: 10.3390/polym10020220.
- Y. Chen, F. Wang, L. Duan, H. Yang, J. Gao, Tetracycline
adsorption onto rice husk ash, an agricultural waste: its kinetic
and thermodynamic studies, J. Mol. Liq., 222 (2016) 487–494.
- Y.-T. Huang, L.-C. Lee, M.-C. Shih, W.-T. Huang, Introductory
of Excel Spreadsheet for comparative analysis of linearized
expressions of Langmuir isotherm for methylene blue onto
rice husk, Int. J. Sci. Res. Publ., 9 (2019) 8587, doi: 10.29322/
ijsrp.9.01.2019.p8587.
- A. Ahmad, N. Khan, B.S. Giri, P. Chowdhary, P. Chaturvedi,
Removal of methylene blue dye using rice husk, cow dung
and sludge biochar: characterization, application, and kinetic
studies, Bioresour. Technol., 306 (2020) 123202, doi: 10.1016/j.
biortech.2020.123202.
- S.K. Hubadillah, M.H.D. Othman, Z. Harun, A.F. Ismail,
M.A. Rahman, J. Jaafar, A novel green ceramic hollow fiber
membrane (CHFM) derived from rice husk ash as combined
adsorbent-separator for efficient heavy metals removal, Ceram.
Int., 43 (2017) 4716–4720.
- J. Shi, X. Fan, D.C.W. Tsang, F. Wang, Z. Shen, D. Hou,
D.S. Alessi, Removal of lead by rice husk biochars produced
at different temperatures and implications for their environmental
utilizations, Chemosphere, 235 (2019) 825–831.
- M.C. Hoyos-Sánchez, A.C. Córdoba-Pacheco, L.F. Rodríguez-Herrera, R. Uribe-Kaffure, Removal of Cd(II) from aqueous
media by adsorption onto chemically and thermally treated
rice husk, J. Chem., 2017 (2017), doi:10.1155/2017/5763832.
- A. Petersons, Skin and Soft Tissues, Pediatr. Surg. Dig., 2009,
pp. 711–719,
doi: 10.1007/978-3-540-34033-1_36.
- M.J. M-Ridha, S.I. Hussein, Z.T. Alismaeel, M.A. Atiya,
G.M. Aziz, Biodegradation of reactive dyes by some bacteria
using response surface methodology as an optimization
technique, Alexandria Eng. J., 59 (2020) 3551–3563.
- A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta,
Removal of basic dye Auramine-O by ZnS:Cu nanoparticles
loaded on activated carbon: optimization of parameters using
response surface methodology with central composite design,
RSC Adv., 5 (2015) 18438–18450.
- P. Sutradhar, P. Maity, S. Kar, S. Poddar, Modelling and
optimization of PSA (pressure swing adsorption) unit by using
aspen Plus® and design expert ®, Int. J. Innov. Technol. Explor.
Eng., 8 (2019) 64–69.
- A. Prof, S. Esmail, S.Y. Mohammed, Removal of cadmium ions
from simulated wastewater using rice husk biosorbent, J. Eng.,
18 (2012) 868–875.
- U. Khalil, M. Bilal Shakoor, S. Ali, M. Rizwan, M. Nasser
Alyemeni, L. Wijaya, Adsorption-reduction performance of
tea waste and rice husk biochars for Cr(VI) elimination from
wastewater, J. Saudi Chem. Soc., 24 (2020) 799–810.
- S. Álvarez-Torrellas, A. Rodríguez, G. Ovejero, J. García,
Comparative adsorption performance of ibuprofen and
tetracycline from aqueous solution by carbonaceous materials,
Chem. Eng. J., 283 (2016) 936–947.
- U.J. Ahile, H.N. Iorav, L. Dooga, D. Terungwa, S.D. Igbawase,
K. Asemawe, S.T. Torsabo, Preparation, characterization and
application of rice husk adsorbent in the removal of ampicillin
from aqueous solution, Int. J. Mod. Chem., 11 (2019) 28–39.
- A. Fakhri, Application of response surface methodology to
optimize the process variables for fluoride ion removal using
maghemite nanoparticles, J. Saudi Chem. Soc., 18 (2014)
340–347.
- M. Sedighi, S.A. Aljlil, M.D. Alsubei, M. Ghasemi,
M. Mohammadi, Performance optimisation of microbial fuel
cell for wastewater treatment and sustainable clean energy
generation using response surface methodology, Alexandria
Eng. J., 57 (2018) 4243–4253.
- L.M. S. Pereira, T.M. Milan, D.R. Tapia-Blácido, Using response
surface methodology (RSM) to optimize 2G bioethanol
production: a review, Biomass Bioenergy, 151 (2021),
doi: 10.1016/j.biombioe.2021.106166.
- D.M. Barends, M.E. Olivera, R.H. Manzo, H.E. Junginger,
K.K. Midha, V.P. Shah, S. Stavchansky, J.B. Dressman, Delivery
of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro
PDT studies, J. Pharm. Sci., 99 (2010) 2386–2398.
- U.E. Osonwa, J.I. Ugochukwu, E.E. Ajaegbu, K.I. Chukwu,
R.B. Azevedo, C.O. Esimone, Enhancement of antibacterial
activity of ciprofloxacin hydrochloride by complexation with
sodium cholate, Bull. Fac. Pharm., Cairo Univ., 55 (2017) 233–237.
- P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu,
Modification of bio-char derived from fast pyrolysis of biomass
and its application in removal of tetracycline from aqueous
solution, Bioresour. Technol., 121 (2012) 235–240.
- M.E. Mahmoud, A.M. El-Ghanam, R.H.A. Mohamed,
S.R. Saad, Enhanced adsorption of Levofloxacin and Ceftriaxone
antibiotics from water by assembled composite of nanotitanium
oxide/chitosan/nano-bentonite, Mater. Sci. Eng. C, 108 (2020)
110199, doi: 10.1016/j.msec.2019.110199.
- Y. Xiang, Z. Xu, Y. Zhou, Y. Wei, X. Long, Y. He, D. Zhi,
J. Yang, L. Luo, A sustainable ferromanganese biochar
adsorbent for effective levofloxacin removal from aqueous
medium, Chemosphere, 237 (2019) 124464, doi:10.1016/j.
chemosphere.2019.124464.
- F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal
of ciprofloxacin from aqueous solution by a magnetic chitosan
grafted graphene oxide composite, J. Mol. Liq., 222 (2016)
188–194.
- E.S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin
adsorption from aqueous solution onto chemically prepared
carbon from date palm leaflets, J. Environ. Sci. (China),
24 (2012) 1579–1586.
- M.R. Majeed, A.S. Muhammed, K.A. Rasheed, The removal of
zinc, chromium and nickel from industrial waste water using
rice husk, Iraqi J. Sci., 55 (2014) 411–418.
- M.E. Peñafiel, E. Vanegas, D. Bermejo, J.M. Matesanz,
M.P. Ormad, Organic residues as adsorbent for the removal
of ciprofloxacin from aqueous solution, Hyperfine Interact.,
240 (2019),
doi: 10.1007/s10751-019-1612-9.
- T.D. Pham, T.N. Vu, H.L. Nguyen, P.H.P. Le, T.S. Hoang,
Adsorptive removal of antibiotic ciprofloxacin from aqueous
solution using protein-modified nanosilica, Polymers (Basel),
12 (2020), doi:10.3390/polym12010057.
- R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of
using green adsorbent of heavy metal removal from aqueous
solutions: adsorption kinetics, isotherm, thermodynamic,
mechanism and economic analysis, Ecol. Eng., 91 (2016)
317–332.
- V. Srivastava, Y.C. Sharma, M. Sillanpää, Green synthesis
of magnesium oxide nanoflower and its application for the
removal of divalent metallic species from synthetic wastewater,
Ceram. Int., 41 (2015) 6702–6709.
- U. Guyo, T. Makawa, M. Moyo, T. Nharingo, B.C. Nyamunda,
T. Mugadza, Application of response surface methodology
for Cd(II) adsorption on maize tassel-magnetite nanohybrid
adsorbent, J. Environ. Chem. Eng., 3 (2015) 2472–2483.
- Z.N. Garba, N.I. Ugbaga, A.K. Abdullahi, Evaluation of
optimum adsorption conditions for Ni(II) and Cd(II) removal
from aqueous solution by modified plantain peels (MPP), Beni-
Suef Univ. J. Basic Appl. Sci., 5 (2016) 170–179.
- A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms
and thermodynamic modeling of liquid phase adsorption of
Rhodamine B dye onto Raphia hookerie fruit epicarp, Water
Resour. Ind., 15 (2016), doi:10.1016/j.wri.2016.06.001.
- R. Li, Z. Wang, J. Guo, Y. Li, H. Zhang, J. Zhu, X. Xie, Enhanced
adsorption of ciprofloxacin by KOH modified biochar derived
from potato stems and leaves, Water Sci. Technol., 77 (2018)
1127–1136.
- S. Wu, Y. Li, X. Zhao, Q. Du, Z. Wang, Y. Xia, L. Xia, Biosorption
behavior of ciprofloxacin onto Enteromorpha prolifera: isotherm
and kinetic studies, Int. J. Phytorem., 17 (2015) 957–961.
- L. Wang, C. Yang, A. Lu, S. Liu, Y. Pei, X. Luo, An easy and
unique design strategy for insoluble humic acid/cellulose nanocomposite
beads with highly enhanced adsorption performance
of low concentration ciprofloxacin in water, Bioresour.
Technol., 302 (2020), doi: 10.1016/j.biortech.2020.122812.
- E.C. Ngeno, F. Orata, L.D. Baraza, V.O. Shikuku, S.J. Kimosop,
Adsorption of caffeine and ciprofloxacin onto pyrolitically
derived water hyacinth biochar: isothermal, kinetic and thermodynamic
studies, J. Chem. Chem. Eng., 10 (2016) 185–194.
- N. Dhiman, N. Sharma, Removal of pharmaceutical drugs from
binary mixtures by use of ZnO nanoparticles: (competitive
adsorption of drugs), Environ. Technol. Innovation, 15 (2019)
100392, doi: 10.1016/j.eti.2019.100392.
- H. Rashidi Nodeh, H. Sereshti, Synthesis of magnetic graphene
oxide doped with strontium titanium trioxide nanoparticles as
a nanocomposite for the removal of antibiotics from aqueous
media, RSC Adv., 6 (2016) 89953–89965.
- M. Naushad, S. Vasudevan, G. Sharma, A. Kumar,
Z.A. Alothman, Adsorption kinetics, isotherms, and thermodynamic
studies for Hg2+ adsorption from aqueous medium
using alizarin red-S-loaded amberlite IRA-400 resin, Desal.
Water Treat., 57 (2016) 18551–18559.