References

  1. M. Malakootian, K. Kannan, M. Amiri Gharaghani, A. Dehdarirad, A. Nasiri, Y.D. Shahamat, H. Mahdizadeh, Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor,
    J. Environ. Chem. Eng., 7 (2019) 103457, doi: 10.1016/j.jece.2019.103457.
  2. G. Liu, Z. Zhu, Y. Yang, Y. Sun, F. Yu, J. Ma, Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater, Environ. Pollut., 246 (2019) 26–33.
  3. A.C. Singer, H. Shaw, V. Rhodes, A. Hart, Review of antimicrobial resistance in the environment and its relevance to environmental regulators, Front. Microbiol., 7 (2016) 1–22, doi: 10.3389/fmicb.2016.01728.
  4. M.C. Danner, A. Robertson, V. Behrends, J. Reiss, Antibiotic pollution in surface fresh waters: occurrence and effects, Sci. Total Environ., 664 (2019) 793–804.
  5. Z.N. Garba, I. Bello, A. Galadima, A.Y. Lawal, Optimization of adsorption conditions using central composite design for the removal of copper(II) and lead(II) by defatted papaya seed, Karbala Int. J. Mod. Sci., 2 (2016) 20–28.
  6. B. Zhang, X. Han, P. Gu, S. Fang, J. Bai, Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk, J. Mol. Liq., 238 (2017) 316–325.
  7. X. Peng, F. Hu, F.L.Y. Lam, Y. Wang, Z. Liu, H. Dai, Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon, J. Colloid Interface Sci.,
    460 (2015) 349–360.
  8. N. Genç E.C. Dogan, Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice, Desal. Water Treat., 53 (2015) 785–793.
  9. M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, M.P. Ormad, Corncobs as a potentially low-cost biosorbent for sulfamethoxazole removal from aqueous solution, Sep. Sci. Technol., 55 (2020) 3060–3071.
  10. D. Balarak, F. Mostafapour, H. Azarpira, Adsorption kinetics and equilibrium of ciprofloxacin from aqueous solutions using Corylus avellana (Hazelnut) activated carbon, Br. J. Pharm. Res., 13 (2016) 1–14.
  11. W. Duan, W. Xiao, N. Wang, B. Niu, Y. Zheng, Removal of three fluoroquinolone antibiotics by NaClO2-modified biosorbent from fruit fiber of C. Procera, J. Nat. Fibers, 17 (2020) 1594–1604.
  12. M.O. Saeed, K. Azizli, M.H. Isa, M.J.K. Bashir, Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process, J. Water Process Eng., 8 (2015) e7–e16.
  13. J. Sharma, Sukriti, P. Anand, V. Pruthi, A.S. Chaddha, J. Bhatia, B.S. Kaith, RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: kinetics and equilibrium studies, Mater. Chem. Phys., 196 (2017) 270–283.
  14. V. Alimohammadi, M. Sedighi, Reduction of TDS in water by using magnetic multiwalled carbon nanotubes and optimizing with response surface methodology, J. Environ. Eng., 144 (2018) 04017114, doi:10.1061/(asce)ee.1943-7870.0001328.
  15. S. Sharifi, R. Nabizadeh, B. Akbarpour, A. Azari, H.R. Ghaffari, S. Nazmara, B. Mahmoudi, L. Shiri, M. Yousefi, Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies, J. Environ. Health Sci. Eng., 17 (2019) 873–888.
  16. S.J.S. Chelladurai, K. Murugan, A.P. Ray, M. Upadhyaya, V. Narasimharaj, S. Gnanasekaran, Optimization of process parameters using response surface methodology: a review, Mater. Today:. Proc., 37 (2020) 1301–1304.
  17. M.P. Gomes, J.C.M. de Brito, M.M.L. Carvalho Carneiro, M.R. Ribeiro da Cunha, Q.S. Garcia, C.C. Figueredo, Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: impacts on biofertilization, Environ. Pollut., 232 (2018) 293–299.
  18. A.R. Mahmood, H.H. Al-Haideri, F.M. Hassan, Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq, Adv. Public Health, 2019 (2019) 1–10, doi: 10.1155/2019/7851354.
  19. Y. Tang, Q. Chen, W. Li, X. Xie, W. Zhang, X. Zhang, H. Chai, Y. Huang, Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability, J. Hazard. Mater., 388 (2020) 122059, doi: 10.1016/j. jhazmat.2020.122059.
  20. S. Sivaselvam, P. Premasudha, C. Viswanathan, N. Ponpandian, Enhanced removal of emerging pharmaceutical contaminant ciprofloxacin and pathogen inactivation using morphologically tuned MgO nanostructures,
    J. Environ. Chem. Eng., 8 (2020) 104256, doi: 10.1016/j.jece.2020.104256.
  21. E.C. Ngeno, V.O. Shikuku, F. Orata, L.D. Baraza, S.J. Kimosop, Caffeine and ciprofloxacin adsorption from water onto clinoptilolite: linear isotherms, kinetics, thermodynamic and mechanistic studies, S. Afr. J. Chem., 72 (2019) 136–142.
  22. A. Avcı, İ. İnci, N. Baylan, Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube, J. Mol. Struct., 1206 (2020) 1–7, doi: 10.1016/j.molstruc.2020.127711.
  23. A. Avcı, İ. İnci, N. Baylan, A comparative adsorption study with various adsorbents for the removal of ciprofloxacin hydrochloride from water, Water Air Soil Pollut., 230 (2019), doi: 10.1007/s11270-019-4315-6.
  24. S. Yi, B. Gao, Y. Sun, J. Wu, X. Shi, B. Wu, X. Hu, Removal of levofloxacin from aqueous solution using rice-husk and woodchip biochars, Chemosphere, 150 (2016) 694–701.
  25. T.D. Pham, T.T. Bui, V.T. Nguyen, T.K.V. Bui, T.T. Tran, Q.C. Phan, T.D. Pham, T.H. Hoang, Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: characteristics, mechanisms, and application for antibiotic removal, Polymers (Basel), 10 (2018), doi: 10.3390/polym10020220.
  26. Y. Chen, F. Wang, L. Duan, H. Yang, J. Gao, Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies, J. Mol. Liq., 222 (2016) 487–494.
  27. Y.-T. Huang, L.-C. Lee, M.-C. Shih, W.-T. Huang, Introductory of Excel Spreadsheet for comparative analysis of linearized expressions of Langmuir isotherm for methylene blue onto rice husk, Int. J. Sci. Res. Publ., 9 (2019) 8587, doi: 10.29322/ ijsrp.9.01.2019.p8587.
  28. A. Ahmad, N. Khan, B.S. Giri, P. Chowdhary, P. Chaturvedi, Removal of methylene blue dye using rice husk, cow dung and sludge biochar: characterization, application, and kinetic studies, Bioresour. Technol., 306 (2020) 123202, doi: 10.1016/j. biortech.2020.123202.
  29. S.K. Hubadillah, M.H.D. Othman, Z. Harun, A.F. Ismail, M.A. Rahman, J. Jaafar, A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal, Ceram. Int., 43 (2017) 4716–4720.
  30. J. Shi, X. Fan, D.C.W. Tsang, F. Wang, Z. Shen, D. Hou, D.S. Alessi, Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations, Chemosphere, 235 (2019) 825–831.
  31. M.C. Hoyos-Sánchez, A.C. Córdoba-Pacheco, L.F. Rodríguez-Herrera, R. Uribe-Kaffure, Removal of Cd(II) from aqueous media by adsorption onto chemically and thermally treated rice husk, J. Chem., 2017 (2017), doi:10.1155/2017/5763832.
  32. A. Petersons, Skin and Soft Tissues, Pediatr. Surg. Dig., 2009, pp. 711–719,
    doi: 10.1007/978-3-540-34033-1_36.
  33. M.J. M-Ridha, S.I. Hussein, Z.T. Alismaeel, M.A. Atiya, G.M. Aziz, Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique, Alexandria Eng. J., 59 (2020) 3551–3563.
  34. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design, RSC Adv., 5 (2015) 18438–18450.
  35. P. Sutradhar, P. Maity, S. Kar, S. Poddar, Modelling and optimization of PSA (pressure swing adsorption) unit by using aspen Plus® and design expert ®, Int. J. Innov. Technol. Explor. Eng., 8 (2019) 64–69.
  36. A. Prof, S. Esmail, S.Y. Mohammed, Removal of cadmium ions from simulated wastewater using rice husk biosorbent, J. Eng., 18 (2012) 868–875.
  37. U. Khalil, M. Bilal Shakoor, S. Ali, M. Rizwan, M. Nasser Alyemeni, L. Wijaya, Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater, J. Saudi Chem. Soc., 24 (2020) 799–810.
  38. S. Álvarez-Torrellas, A. Rodríguez, G. Ovejero, J. García, Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials, Chem. Eng. J., 283 (2016) 936–947.
  39. U.J. Ahile, H.N. Iorav, L. Dooga, D. Terungwa, S.D. Igbawase, K. Asemawe, S.T. Torsabo, Preparation, characterization and application of rice husk adsorbent in the removal of ampicillin from aqueous solution, Int. J. Mod. Chem., 11 (2019) 28–39.
  40. A. Fakhri, Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles, J. Saudi Chem. Soc., 18 (2014) 340–347.
  41. M. Sedighi, S.A. Aljlil, M.D. Alsubei, M. Ghasemi, M. Mohammadi, Performance optimisation of microbial fuel cell for wastewater treatment and sustainable clean energy generation using response surface methodology, Alexandria Eng. J., 57 (2018) 4243–4253.
  42. L.M. S. Pereira, T.M. Milan, D.R. Tapia-Blácido, Using response surface methodology (RSM) to optimize 2G bioethanol production: a review, Biomass Bioenergy, 151 (2021), doi: 10.1016/j.biombioe.2021.106166.
  43. D.M. Barends, M.E. Olivera, R.H. Manzo, H.E. Junginger, K.K. Midha, V.P. Shah, S. Stavchansky, J.B. Dressman, Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies, J. Pharm. Sci., 99 (2010) 2386–2398.
  44. U.E. Osonwa, J.I. Ugochukwu, E.E. Ajaegbu, K.I. Chukwu, R.B. Azevedo, C.O. Esimone, Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate, Bull. Fac. Pharm., Cairo Univ., 55 (2017) 233–237.
  45. P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu, Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution, Bioresour. Technol., 121 (2012) 235–240.
  46. M.E. Mahmoud, A.M. El-Ghanam, R.H.A. Mohamed, S.R. Saad, Enhanced adsorption of Levofloxacin and Ceftriaxone antibiotics from water by assembled composite of nanotitanium oxide/chitosan/nano-bentonite, Mater. Sci. Eng. C, 108 (2020) 110199, doi: 10.1016/j.msec.2019.110199.
  47. Y. Xiang, Z. Xu, Y. Zhou, Y. Wei, X. Long, Y. He, D. Zhi, J. Yang, L. Luo, A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium, Chemosphere, 237 (2019) 124464, doi:10.1016/j. chemosphere.2019.124464.
  48. F. Wang, B. Yang, H. Wang, Q. Song, F. Tan, Y. Cao, Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite, J. Mol. Liq., 222 (2016) 188–194.
  49. E.S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci. (China), 24 (2012) 1579–1586.
  50. M.R. Majeed, A.S. Muhammed, K.A. Rasheed, The removal of zinc, chromium and nickel from industrial waste water using rice husk, Iraqi J. Sci., 55 (2014) 411–418.
  51. M.E. Peñafiel, E. Vanegas, D. Bermejo, J.M. Matesanz, M.P. Ormad, Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution, Hyperfine Interact., 240 (2019),
    doi: 10.1007/s10751-019-1612-9.
  52. T.D. Pham, T.N. Vu, H.L. Nguyen, P.H.P. Le, T.S. Hoang, Adsorptive removal of antibiotic ciprofloxacin from aqueous solution using protein-modified nanosilica, Polymers (Basel), 12 (2020), doi:10.3390/polym12010057.
  53. R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91 (2016) 317–332.
  54. V. Srivastava, Y.C. Sharma, M. Sillanpää, Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater, Ceram. Int., 41 (2015) 6702–6709.
  55. U. Guyo, T. Makawa, M. Moyo, T. Nharingo, B.C. Nyamunda, T. Mugadza, Application of response surface methodology for Cd(II) adsorption on maize tassel-magnetite nanohybrid adsorbent, J. Environ. Chem. Eng., 3 (2015) 2472–2483.
  56. Z.N. Garba, N.I. Ugbaga, A.K. Abdullahi, Evaluation of optimum adsorption conditions for Ni(II) and Cd(II) removal from aqueous solution by modified plantain peels (MPP), Beni- Suef Univ. J. Basic Appl. Sci., 5 (2016) 170–179.
  57. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016), doi:10.1016/j.wri.2016.06.001.
  58. R. Li, Z. Wang, J. Guo, Y. Li, H. Zhang, J. Zhu, X. Xie, Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves, Water Sci. Technol., 77 (2018) 1127–1136.
  59. S. Wu, Y. Li, X. Zhao, Q. Du, Z. Wang, Y. Xia, L. Xia, Biosorption behavior of ciprofloxacin onto Enteromorpha prolifera: isotherm and kinetic studies, Int. J. Phytorem., 17 (2015) 957–961.
  60. L. Wang, C. Yang, A. Lu, S. Liu, Y. Pei, X. Luo, An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water, Bioresour. Technol., 302 (2020), doi: 10.1016/j.biortech.2020.122812.
  61. E.C. Ngeno, F. Orata, L.D. Baraza, V.O. Shikuku, S.J. Kimosop, Adsorption of caffeine and ciprofloxacin onto pyrolitically derived water hyacinth biochar: isothermal, kinetic and thermodynamic studies, J. Chem. Chem. Eng., 10 (2016) 185–194.
  62. N. Dhiman, N. Sharma, Removal of pharmaceutical drugs from binary mixtures by use of ZnO nanoparticles: (competitive adsorption of drugs), Environ. Technol. Innovation, 15 (2019) 100392, doi: 10.1016/j.eti.2019.100392.
  63. H. Rashidi Nodeh, H. Sereshti, Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media, RSC Adv., 6 (2016) 89953–89965.
  64. M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. Alothman, Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin, Desal. Water Treat., 57 (2016) 18551–18559.