References

  1. X.J. Hu, Y.L. Zhao, H. Wang, X. Tan, Y. Yang, Y. Liu, Efficient removal of tetracycline from aqueous media with a Fe3O4 nanoparticles@graphene oxide nanosheets assembly, Int. J. Environ. Res. Public Health, 14 (2017) 1495, doi: 10.3390/ ijerph14121495.
  2. A.-H. Rafael, G.-D. Carlos, A.-I. María, G.-R. Gabriel, J. Cuevas, E. Eymar, Comparative adsorption of tetracyclines on biochars and stevensite: looking for the most effective adsorbent, Appl. Clay Sci., 160 (2018) 162–172.
  3. H. Wang, C. Fang, Q. Wang, Y. Chu, Y. Song, Y. Chen, X. Xue, Sorption of tetracycline on biochar derived from rice straw and swine manure, RSC Adv., 8 (2018) 16260–16268.
  4. Z. Song, Y.-L. Ma, C. Li, M. Xu, Removal of tetracycline residue from pharmaceutical wastewater by using 3D composite film, Chem. Eng. J., 348 (2018) 898–907.
  5. Y. Dai, K. Zhang, X. Meng, J. Li, X. Guan, Q. Sun, Y. Sun, W. Wang, M. Lin, M. Liu, S. Yang, Y. Chen, F. Gao, X. Zhang, Z. Liu, New use for spent coffee ground as an adsorbent for tetracycline removal in water, Chemosphere, 215 (2019) 163−172.
  6. L. Yan, Y. Liu, Y. Zhang, S. Liu, C. Wang, W. Chen, C. Liu, Z. Chen, Y. Zhang, ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline, Bioresour. Technol., 297 (2020) 122381, doi: 10.1016/j.biortech.2019.122381.
  7. K.L. Yang, Q.Y. Yue, J.J. Kong, P. Zhao, Y. Gao, K.F. Fu, B.Y. Gao, Microbial diversity in combined UAF-UBAF system with novel sludge and coal cinder ceramic fillers for tetracycline wastewater treatment, Chem. Eng. J., 285 (2016) 319–330.
  8. K. Zhang, S.H. Xiao, T.H. Song, X.Q. Hu, H.B. Qu, L.R. Zhang, Photocatalytic degradation of tetracycline by TiO2 nanotubes electrode, Environ. Chem., 35 (2016) 1438–1444.
  9. M. Ahmadi, M.H. Ramezani, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite,
    J. Environ. Manage., 186 (2017) 55–63.
  10. X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants, Crit. Rev. Env. Sci. Technol., 51 (2021) 751–790.
  11. J. Zhao, F. Gao, Y. Sun, W. Fang, X. Li, Y. Dai, New use for biochar derived from bovine manure for tetracycline removal, J. Environ. Chem. Eng., 9 (2021) 105585, doi: 10.1016/j. jece.2021.105585.
  12. N. Oturan, J. Wu, H. Zhang, V.K. Sharma, M.A. Oturan, Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials, Appl. Catal., B, 140 (2013) 92–97.
  13. Y. Zheng, M.H. Huang, L. Chen, W. Zheng, P.-k. Xie, Q. Xu, Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes, Desalination, 359 (2015) 113–122.
  14. S.-F. Pan, M.-P. Zhu, J. Paul Chen, Z.-H. Yuan, L.-B. Zhong, Y.-M. Zheng, Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane – implications for antibiotics recovery, Sep. Purif. Technol., 153 (2015) 76–83.
  15. C. Zhao, H.P. Deng, Removal of oxytetracycline in water by UV/hydrophobic zeolite loaded with TiO2, J. Tongji Univ.: Nat. Sci., 39 (2007) 1360–1365 (in Chinese).
  16. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  17. M.J. Ahmed, Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: review, Environ. Toxicol. Pharmacol., 50 (2017) 1–10.
  18. C. Ji, J.M. Wang, Z.L. Mei, H.C. Song, X.Q. Zhong, F.B. Yin, Research on the Effect and Mechanism of Tetracycline Removal From Water by Attapulgite Sorption Ultramembrane Coupled Technology, Industrial Construction Magazine of China, 2017, p. 9.
  19. J.J. Ma, B. Li, L.C. Zhou, Y. Zhu, J. Li, Y. Qiu, Simple urea immersion enhanced removal of tetracycline from water by polystyrene microspheres, Int. J. Environ. Res. Public Health, 15 (2018) 1524, doi:10.3390/ijerph15071524.
  20. X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang, L. Mao, M. Qiu, B. Hu, H. Yang, X. Wang, Orderly porous covalent organic frameworksbased materials: superior adsorbents for pollutants removal from aqueous solutions, The Innovation, 2 (2021) 100076, doi: 10.1016/j.xinn.2021.100076.
  21. Y. Dai, W. Wang, L. Lu, L. Yan, D. Yu, Utilization of biochar for the removal of nitrogen and phosphorus, J. Cleaner Prod., 257 (2020) 120573, doi: 10.1016/j.jclepro.2020.120573.
  22. M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis, Sci. Total Environ., 760 (2021) 143333, doi:10.1016/j.scitotenv.2020.143333.
  23. L. Yao, H. Yang, Z. Chen, M. Qiu, B. Hu, X. Wang, Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater, Chemosphere, 273 (2021) 128576, doi:10.1016/j.chemosphere.2020.128576.
  24. J. Ma, Y.R. Sun, F. Yu, Efficient removal of tetracycline with KOH-activated graphene from aqueous solution,
    R. Soc. Open Sci., 4 (2017) 170731, doi: 10.1098/rsos.170731.
  25. G.Z. Kyzas, E.A. Deliyanni, Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents, Chem. Eng. Res. Des., 97 (2015) 135–144.
  26. F. Bouaziz, M. Koubaa, F. Kallel, F. Chaari, D.A. Driss, R. Ghorbel, S.E. Chaabouni, Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions, Ind. Crops Prod., 74 (2015) 903–911.
  27. P.-H. Chang, Z. Li, W.-T. Jiang, C.-Y. Kuo, J.-S. Jean, Adsorption of tetracycline on montmorillonite: influence of solution pH, temperature, and ionic strength, Desal. Water Treat., 55 (2015) 1380–1392.
  28. G.Z. Kyzas, S.G. Nanaki, A. Koltsakidou, M. Papageorgiou, M. Kechagia, D.N. Bikiaris, D.A. Lambropoulou, Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media, Anal. Chim. Acta, 866 (2015) 27–40.
  29. C.J. An, S.Q. Yang, G.H. Huang, S. Zhao, P. Zhang, Y. Yao, Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: equilibrium and kinetic adsorption studies, Fuel, 165 (2016) 264–271.
  30. X. Zhong, Z. Lu, W. Liang, B. Hu, The magnetic covalent organic framework as a platform
    for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution, J. Hazard. Mater., 393 (2020) 122353, doi: 10.1016/j.jhazmat.2020.122353.
  31. T. Hemalatha, A. Ramaswamy, A review on fly ash characteristics – towards promoting high volume utilization in developing sustainable concrete, J. Cleaner Prod., 147 (2017) 546–559.
  32. G. Xu, X. Shi, Characteristics and applications of fly ash as a sustainable construction material: a state-of-the-art review, Resour. Conserv. Recycl., 136 (2018) 95–109.
  33. M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36 (2010) 327–363.
  34. X.Y. Zhuang, L. Chen, K. Sridhar, C.H. (Clayton) Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, Fly ash-based geopolymer: clean production, properties and applications, J. Cleaner Prod., 125 (2016) 253–267.
  35. A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M.N. Azevedo, M.J. Rodrigues Pires, Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 139 (2015) 59–67.
  36. H. Javadian, F. Ghorbani, H.-a. Tayebi, S.M.H. Asl, Study of the adsorption of Cd(II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies, Arabian J. Chem., 8 (2015) 837–849.
  37. T. Hemalatha, A. Ramaswamy, A review on fly ash characteristics – towards promoting high volume utilization in developing sustainable concrete, J. Cleaner Prod., 147 (2017) 546–559.
  38. T. Zhou, Z. Zhang, X. Xu, W. Pan, Removal of Cu2+ from waste water with zeolite X synthesized by coal fly ash, Coal Convers., 34 (2011) 76–80.
  39. H.H. Liu, L. Zhao, Q. Kang, Performance analysis of CeO2-CuO/fly ash for adsorption of SO2/NO, J. Environ. Eng., 12 (2018) 2807–2817.
  40. Q.B. Xiao, G.F. Xie, Preparation of modified fly ash and its adsorption properties for heavy metals, Guangdong China Chem. Ind., 45 (2018) 54–55.
  41. Y. Dai, J. Shi, N. Zhang, Z. Pan, C. Xing, X. Chen, Current research trends on microplastics pollution and impacts on agro-ecosystems: a short review, Sep. Sci. Technol., 57 (2022) 656–669, doi:10.1080/01496395.2021.1927094.
  42. Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm., 77 (2008) 16–23.
  43. M. Eugenia Parolo, M.J. Avena, G.R. Pettinari, M.T. Baschini, Influence of Ca2+ on tetracycline adsorption on montmorillonite, J. Colloid Interface Sci., 368 (2012) 420–426.
  44. R.A. Figueroa, A. Leonard, A.A. MacKay, Modeling tetracycline antibiotic sorption to clays, Environ. Sci. Technol., 38 (2004) 476–483.
  45. L. Liu, X. Wang, W. Fang, X. Li, D. Shan, Y. Dai, Adsorption of metolachlor by a novel magnetic illite–biochar and recovery from soil, Environ. Res., 204 (2022) 111919, doi: 10.1016/j. envres.2021.111919.
  46. Z.H. Teng, Preparation of Modified Fly Ash and Its Application in Wastewater Containing Cu2+, Zn2+ and Cr6+, Master’s Degree, Kunming University of Science and Technology, 2007.
  47. K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Adv. Colloid Interface Sci., 140 (2008) 114–131.
  48. C. Peiris, S.R. Gunatilake, T.E. Mlsna, D. Mohan, M. Vithanage, Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review, Bioresour. Technol., 246 (2017) 150–159.
  49. R.T. Yu, Y. Yang, X. Ma, Z.P. Xie, C.G. Wang, Acid modified fly ash to remove phosphate in wastewater, J. Ceram., 38 (2017) 82–86.
  50. B.A. Shah, C.B. Mistry, A.V. Shah, Sequestration of Cu(II) and Ni(II) from wastewater by synthesized zeolitic materials: equilibrium, kinetics and column dynamics, Chem. Eng. J., 220 (2013) 172–184.
  51. F. Lian, Z. Song, Z. Liu, L. Zhu, B. Xing, Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH, Environ. Pollut., 178 (2013) 264–270.
  52. S.A. Sassman, L.S. Lee, Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange, Environ. Sci. Technol., 39 (2005) 7452–7459.
  53. A. Aguayo-Villarreal, L.A. Ramírez-Montoya, V. Hernández-Montoya, A. Bonilla-Petriciolet, M.A. Montes-Morán, E.M. Ramírez-Lopez, Sorption mechanism of anionic dyes on pecan nut shells (Carya illinoinensis) using batch and continuous systems, Ind. Crops Prod., 48 (2013) 89–97.
  54. J.F. Wang, J.L. Zhang, Q. Yang, Adsorption characteristics of fly ash on Cr(VI), Techniques and Equipment for Environmental Protection of China, 8 (2014) 4593–4599.
  55. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  56. W.A. Khanday, B.H. Hameed, Zeolite-hydroxyapatite-activated oil palm ash composite for antibiotic tetracycline adsorption, Fuel, 215 (2018) 499–505.
  57. J. Li, Study on Adsorption of Nitrate and Phosphate by Modified Biochar, Master’s Degree, Chinese Academy of Agricultural Sciences, 2012.
  58. F. Liu, Preparation of a Novel Magnetic Adsorbent and Its Adsorption Properties for Tetracycline in Water, Master’s Degree, Northwest A&F University, 2017.
  59. X. Ren, Adsorbent for Sludge Preparation in Process Wastewater of Water Purification Plant and Adsorption Characteristics of Cr6+ in Water, Doctor’s Degree, Harbin Institute of Technology, 2014.
  60. Y. Lin, Comparison of Langmuir, Temkin and Freundlich equations applied to soil adsorption of zinc, J. Soil, 5 (1994) 269–272.
  61. H.L. Zhao, S. Laura, A. Caren, F. Nancy, Adsorption of tetracycline on kaolinite with pH-dependent surface charges, J. Colloid Interface Sci., 351 (2010) 254–260.
  62. H.T. Nguyen, S. Rahimi-Aghdam, Z.P. Bažant, Sorption isotherm restricted by multilayer hindered adsorption and its relation to nanopore size distribution, J. Mech. Phys. Solids, 127 (2019) 111–124.
  63. T.X. Lu, Preparation of Magnetic Sludge-Based Adsorbent and Study on Removal of Tetracycline from Water, Master’s Degree, Harbin Institute of Technology, 2017.
  64. L.Q. Wang, K. Wang, Y.L. Ma, Modified montmorillonite adsorption of tetracycline in pharmaceutical wastewater, Environ. Sci. Technol., 40 (2017) 197–201.
  65. P.Z. Zhang, Y.F. Li, Y.Y. Cao, L.J. Han, Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures, Bioresour. Technol., 285 (2019) 121348, doi: 10.1016/j.biortech.2019.121348.
  66. L. Liu, Y. Dai, Strong adsorption of metolachlor by biochar prepared from walnut shells in water, Environ. Sci. Pollut. Res., 28 (2021) 48379−48391, doi: 10.1007/s11356-021-14117-9.
  67. J. Zhao, Y. Dai, Tetracycline adsorption mechanisms by NaOH-modified biochar derived from waste Auricularia auricula dregs, Environ. Sci. Pollut. Res., 29 (2022) 9142–9152,
    doi:10.1007/s11356-021-16329-5.
  68. A. Fraay, J.M. Bijen, P. Vugelaar, Cement-stabilized fly ash base courses, Cem. Concr. Res., 12 (1990) 279–291.