References

  1. R. Wang, T.-Z. Liu, T. Wang, The fate of antibiotics in environment and its ecotoxicology: a review, Acta Ecol. Sin., 26 (2006) 265–270.
  2. P.K. Jjemba, The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review, Agric. Ecosyst. Environ., 93 (2002) 267–278.
  3. K. Pankaj, F.G. Rossman, S.A. Diana, Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil, Environ. Sci. Technol., 38 (2004) 4097–4105.
  4. Q.Y. Zeng, D. Ding, X. Tan, Pollution status and sources of tetracycline antibiotics in agricultural soil in China:
    a review, Ecol. Environ. Sci., 27 (2018) 1774–1782.
  5. A.T. Xie, J.Y. Cui, Y.Y. Chen, J.H. Lang, C.X. Li, Y.S. Yan, J.D. Dai, Simultaneous activation and magnetization toward facile preparation of auricularia-based magnetic porous carbon for efficient removal of tetracycline,
    J. Alloys Compd., 784 (2019) 76–87.
  6. Z.H. Yang, J. Cao, Y.P. Chen, X. Li, W.P. Xiong, Y.Y. Zhou, C.Y. Zhou, R. Xu, Y.R. Zhang, Mn-doped zirconium metalorganic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution, Microporous Mesoporous Mater., 277 (2019) 277–285.
  7. M. Dolatabadi, M. Mehrabpour, M. Esfandyari, S. Ahmadzadeh, Adsorption of tetracycline antibiotic onto modified zeolite: experimental investigation and modeling, MethodsX, 7 (2020) 100885–100894.
  8. F.X. Feng, X.P. Xu, Q.X. Cheng, Y.H. Han, Degradation of Trichosporon mycotoxinivorans XPY-10 by tetracycline, Chin. J. Environ. Eng., 7 (2013) 4779–4785.
  9. M. Pei, Y.T. Liang, L.Y. Yi, S.N. Cao, Z.P. Yang, D.D. Wang, Y. Zhao, Degradation of residual antibiotics in soil by ryegrass and its effect on microbial activity, Chin. J. Environ. Eng., 11 (2017) 3179–3186.
  10. B. Kakavandi, N. Bahari, R.R. Kalantary, D.E. Fard, Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: a new hybrid system, Ultrason. Sonochem., 55 (2019) 75–85.
  11. P.P. Wang, Q.X. Yuan, W.B. Zhou, Effect of photocatalytic degradation of tetracycline antibiotics in biogas slurry and reaction kinetics, Trans. Chin. Soc. Agro Eng., 34 (2018) 193–198.
  12. D.S. Wang, X. Li, Adsorption and desorption features of tetracycline antibiotics in different texture soils, J. Saf. Environ., 17 (2017) 227–231.
  13. W.G. Zhu, Y.Y. Duan, G.J. Meng, R.C. Guo, X.H. Li, Adsorption–desorption of tetracycline and oxytetracycline in Cu contaminated soil, J. Henan Univ. (Nat. Sci. Ed.), 50 (2020) 11–18.
  14. Z.X. Zhang, G.Y. Wu, Z.C. Xu, Functional Groups' variation of tetracycline in the process of adsorption in clay minerals, J. Agric. Resour. Environ., 34 (2007) 115–120.
  15. H.Y. Deng, X.W. Cao, W.B. Li, H. Zhang, H.X. He, D. Wang, L.P. Ren, Z.F. Meng, Effects of three materials on the adsorption of tetracycline from purple soil, Environ. Monit. Manage. Technol., 32 (2020) 68–71.
  16. Q.Q. Chai, S.B. Hu, J.W. Liu, D.C. Li, J. Wang, F.J He, Effects of organic modification on adsorption of tetracycline antibiotics from attapulgite clay, Environ. Monit. Chin., 34 (2018) 95–103.
  17. X.X. Wang, Z.F. Meng, X. Liu, T. Wang, X.L. Hu, X.X Sun, Adsorption of tetracycline and norfloxacin by BS-18 amphteric modified bentonite, Environ. Sci., 42 (2021) 2334–2342.
  18. L. Bebrevska, K. Foubert, N. Hermans, S. Chatterjee, E.V. Marck, G.D. Meyer, A. Vlietinck, L. Pieters, S. Apers,
    In vivo antioxidative activity of a quantified pueraria lobata root extract, J. Ethnopharmacol., 127 (2010) 112–117.
  19. Y.W. Kuang, D.Z. Wen, C.W. Zhong, G.Y. Zhou, Root exudates and their roles in phytoremediation, Acta Phytoecologica Sin., 27 (2003) 709–717.
  20. R.B. Yang, Q.R. Zeng, X.H. Zhou, B.Q. Tie, S.Y. Liu, Activation effect of plant root exudates on heavy metals in lead-zinc tailings contaminated soil, Ago-Environ. Prot., 3 (2000) 152–155.
  21. W.H. Xu, H. Huang, A.H. Wang, Z.T. Xiong, Advance in studies on activation of heavy metal by root exudates and mechanism, Ecol. Environ., 15 (2006) 184–189.
  22. K.M. Nowak, A. Miltner, C. Poll, E. Kandeler, H. Pagel, Plant litter enhances degradation of the herbicide mcpa and increases formation of biogenic non-extractable residues in soil, Environ. Int., 142 (2020) 105867–105876.
  23. M. Lyu, J. Xie, M.A. Vadeboncoeur, M. Wang, Y. Kuzyakov, Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils, Biol. Fertil. Soils, 54 (2018) 925–934.
  24. Y.L. Rao, Y.G. Wu, X.Y. Xu, Y.F. Luo, H. Wang, X.Y. Wu, G.K. Hu, T. Yang, Study on the effect of the litter on the discharge of pollutants in the sediment of the acid mine wastewater treatment wetland, J. Jiangsu Agric. Sci., 46 (2018) 260–265.
  25. H.X. Sheng, Study on Litter Decomposition and Heavy Metal Dynamics of Mangrove Wetland in Jiulong River Estuary, Xiamen University, Xiamen, 2009, pp. 60–85.
  26. W.B. Li, Z.F. Meng, Z. Liu, H.Y. Chen, Q. Wu, S.E. Xu, Chromium(VI) adsorption characteristics of bentonite under different modification patterns, Pol. J. Environ. Stud., 25 (2016) 1075–1083.
  27. W.B. Li, X.Y. Chen, H.Y. Deng, D. Wang, J.C. Jiang, Y.Z. Zeng, L. Kang, Z.F. Meng, Effects of exogenous biochar on tetracycline adsorption by different riverbank soils from Sichuan and Chongqing section of Jialing river, Chin. J. Soil Sci., 51 (2020) 46–54.
  28. Y. Zou, H.Y. Deng, M. Li, Y.H. Zhao, W.B. Li, Enhancing tetracycline adsorption by riverbank soils by application of biochar-based composite materials, Desal. Water Treat., 207 (2020) 332–340.
  29. Z.C. Li, Q.S. Wei, Z.X. Luo, L.F. Xu, Y.N. Liu, C.Y. Yan, J.S. Liu, Effects of soil and water ratio, pH and organic matter on the adsorption of tetracycline in sediments, J. Agro-Environ. Sci., 36 (2017) 761–767.
  30. J.L. Colaizzi, P.R. Klink, pH-Partition behavior of tetracyclines, J. Pharm. Sci., 58 (1969) 1184–1189.