References
- F. Babaei, M.H. Ehrampoush, H. Eslami, M.T. Ghaneian,
H. Fallahzadeh, P. Talebi, R.F. Fard, A.A. Ebrahimi. Removal
of linear alkylbenzene sulfonate and turbidity from greywater
by a hybrid multi-layer slow sand filter microfiltration
ultrafiltration system, J. Cleaner Prod., 211 (2019) 922–931.
- H. Eslami, H. Hashemi, R.A. Fallahzadeh, K.R. Khosravi,
R. Fouladi-Fard, A. Ebrahimi, Effect of organic loading
rates on biogas production and anaerobic biodegradation of
composting leachate in the anaerobic series bioreactors, Ecol.
Eng., 110 (2018) 165–171.
- K.K. Barnes, D.W. Kolpin, E.T. Furlong, S.D. Zaugg, M.T. Meyer,
L.B. Barber, A national reconnaissance of pharmaceuticals and
other organic wastewater contaminants in the United States-
Groundwater., Sci. Total Environ., 402 (2008) 192–200.
- A.R. Donovan, C.D. Adams, Y. Ma, C. Stephan, T. Eichholz,
H. Shi, Detection of zinc oxide and cerium dioxide nanoparticles
during drinking water treatment by rapid single particle
ICP-MS methods, Anal. Bioanal. Chem., 408 (2016) 5137–5145.
- C.W. Huang, S.W. Li, V.H.C. Liao. Chronic ZnO-NPs exposure
at environmentally relevant concentrations results in metabolic
and locomotive toxicities in Caenorhabditis elegans, Environ.
Pollut., 220 (2017) 1456–1464.
- X. Li, M. Yoneda, Y. Shimada, Y. Matsui, Effect of surfactants on
the aggregation and sedimentation of zinc oxide nanomaterial
in natural water matrices, Sci. Total Environ., 582 (2017) 581–582.
- S.E. Belanger, J.L. Brill, J.M. Rawlings, B.B. Price, Development
of acute toxicity quantitative structure-activity relationships
(QSAR) and their use in linear alkylbenzene sulfonate species
sensitivity distributions, Chemosphere, 155 (2016) 18–27.
- Hera: Human and Environmental Risk Assessment on
Ingredients of Household Cleaning Products, LAS, 2013, 101 p.
- E. Darvishi, D. Kahrizi, E. Arkan, Comparison of different
properties of zinc oxide nanoparticles synthesized by the green
(using Juglans regia L. leaf extract) and chemical methods,
J. Mol. Liq., 286 (2019) 1–7.
- H. Ma, P.L. Williams, S.A. Diamond, Ecotoxicity of manufactured
ZnO nanoparticles: a review, Environ. Pollut., 172 (2013)
76–85.
- S.L. Schneider, H.W. Lim. A review of inorganic UV filters zinc
oxide and titanium dioxide, Photodermatol. Photoimmunol.
Photomed., 35 (2019) 442–446.
- N. Wiesmann, M. Kluenker, P. Demuth, W. Brenner, W. Tremel,
J. Brieger, Zinc overload mediated by zinc oxide nanoparticles
as innovative antitumor agent, J. Trace Elem. Med. Biol.,
51 (2019) 226–234.
- T.E.A. Chalew, G.S. Ajmani, H. Huang, K.J. Schwab, Evaluating
nanoparticle breakthrough during drinking water treatment,
Environ. Health Perspect., 121 (2013) 1161–1166.
- T. Ivankovic, J. Hrenovic, Surfactants in the environment, Arh
Hig Rada Toksikol, 61 (2010) 95–110.
- A. Dereszewska, S. Cytawa, R.T. Wandzel, K. Medrzycka, The
effect of anionic surfactant concentration on activated sludge
condition and phosphate release in biological treatment plant,
Pol. J. Environ. Stud., 24 (2015) 83–91.
- Conama: Conselho Nacional Do Meio Ambiente, Resolução
n° 357, Brazil, 2005, 27 p.
- Ministério Da Saúde, Portaria de Consolidação n° 5, Brazil, 201.
- G.E. Batley, J.K. Kirby, M.J. Mclaughling, Fate and risks of
nanomaterials in aquatic and terrestrial environments, Acc.
Chem. Res., 46 (2013) 854–862.
- F. Gagne, J. Auclair, P. Turcotte, C. Gagnon, C. Peyrot,
K. Wilkinson, Comparative Biochemistry and Physiology,
219 (2019) 1–11.
- S. Ranjan, N. Dasgupta. S. Singh, M. Gandhi, Toxicity and
regulations of food nanomaterials, Environ. Chem. Lett.,
17 (2019) 929–944.
- N.H. Tkachenko, Z.M. Yaremko, C. Bellmann, M.M. Soltys,
The influence of ionic and nonionic surfactants on aggregative
stability and electrical surface properties of aqueous suspensions
of titanium dioxide, J. Colloid Interface Sci., 299 (2006) 686–695.
- Z.L. Wang, Nanostructures of zinc oxide, MaterialsToday,
7 (2004) 26–33.
- R. Khan, M.A. Inam, D.R. Park, S.Z. Zam, S. Shin, S. Khan,
M. Akram, I.T. Yeom, Influence of organic ligands on the
colloidal stability and removal of ZnO nanoparticles from
synthetic waters by coagulation, Processes, 6 (2018) 170, doi:
10.3390/pr6090170.
- G. Zhou, Q. Wang, J. Li, Q. Li, H. Xu, Q. Ye, Y. Wang, S. Shu,
J. Zhang, Removal of polyethylene microplastics using PAS
and FeCl3 coagulation: performance and mechanism, Sci. Total
Environ., 752 (2021) 1–8.
- Z. You, Ch. Zhao, Y. Sun, Ch. Zhuan, Application of PAFC/CPAM for the removal of ZnO microparticles by enhanced
coagulation, Water Sci. Technol., 2 (2021) 484–498.
- I.G. Godinez, C.J.G. Darnault, Aggregation and transport of
nano-TiO2 in saturated porous media: effects of pH, surfactants,
and flow velocity, Water Res., 45 (2011) 839–851.
- M. Li, D. Lin, L. Zhu, Effects of water chemistry on the
dissolution of ZnO nanoparticles and their toxicity to Escherichia
coli, Environ. Pollut., 173 (2013) 97–102.
- Y. Xia, X. Xiang, K. Dong, Y. Gong, Z. Li, Surfactant stealth effect
of microplatics in traditional coagulation process observed via
3-D fluorescence imaging, Sci. Total Environ., 729 (2020) 1–8.
- G.Sh. Boltachev, M.G. Ivanov, Effect of nanoparticle
concentration on coagulation rate of colloidal suspensions,
Helyon, 6 (2020) 1–7.
- E.L. Terechova, G. Zhang, J. Chen, N.A. Sosnina, F. Yang,
Combined chemical coagulation–flocculation/ultraviolet
photolysis treatment for anionic surfactants in laundry
wastewater,
J. Environ. Chem. Eng., 2 (2014) 2111–2119.
- J.C.P. Penteado, O.A.E. Seoud, L.R.F. Carvalho, Alquilbenzeno
Sulfonato Linear: Uma Abordagem Ambiental e Analítica,
Química Nova, 29 (2006) 1038–1046.
- E. Liwarska-Bizukojc, M. Bizukojc, Digital image analysis to
estimate the influence of sodium dodecyl sulphate on activated
sludge flocs, Process Biochem., 40 (2005) 2067–2072.
- J.S. Matthew, N.J. Malcolm, The biodegradation of surfactants
in the environment, Biochimica et Biophysica Acta, 1508 (2000)
235–251.
- D. Zhou, A.A. Keller, Role of morphology in the aggregation
kinetics of ZnO nanoparticles, Water Res., 44 (2010) 2948–2956.
- D. Allen, S. Arthur, H. Haynes, First Order Decay Estimation
of SuDS Pollutant Removal Rates, 2nd Infrastructure and
Environment Scotland Postgraduate Conference, The
University of Edinburgh, Edinburgh, 2014.
- D. Allen, V. Olive, S. Arthur, H. Haynes, Urban sediment
transport through an established vegetated swale: long term
treatment efficiencies and deposition, Water, 7 (2015) 1046–1067.
- M. Irani, T. Mohammadi, S. Mohebbi, Photocatalytic degradation
of methylene blue with ZnO nanoparticles;
a joint experimental
and theoretical study, J. Mex. Chem. Soc., 60 (2016) 218–225.
- R.M.F. Cuba, T.S. Cintra, D.C.C. Paiva, F.J.C. Terán, Influência
do etanol como cosubstrato na biorremediação de água
contaminada com formulação comercial à base de glifosato,
Eng. Sanit. Ambient, 24 (2019) 983–991.
- J.R. Regalbuto, J. Robles, The Engineering of Pt/Carbon Catalyst
Preparation, University of Illinois, Chicago, 2004.
- R. Khan, M.A. Inam, M.M. Iqbal, M.S. Shoaib, D.R. Park,
K. Hoon Lee, S. Shin, S. Khan, I.T. Yeom, Removal of ZnO
nanoparticles from natural waters by coagulation–flocculation
process: influence of surfactant type on aggregation, dissolution
and colloidal stability, Sustainability, 11 (2019) 17, doi: 10.3390/
su11010017.
- D. Daltin, Tensoativos: Química, propriedades e aplicações,
5th ed., Blucher, São Paulo, Brazil, 2011.
- D. Lin, N. Liu, K. Yang, B. Xing, F. Wu, Different stabilities of
multiwalled carbon nanotubes in fresh surface water samples,
Environ. Pollut., 158 (2010) 1270–1274.
- D.A. Dickson, G.A. Liu, C.B. Li, G.C. Tachiev, Y. Cai, Dispersion
and stability of bare hematite nanoparticles: effect of dispersion
tools, nanoparticle concentration, humic acid and ionic strength,
Sci. Total Environ., 419 (2012) 170–177.
- H.N. Tran, S.J. You, A.H. Bandegharaei, H.P. Chao, Mistakes
and inconsistencies regarding adsorption of contaminants
from aqueous solutions: a critical review, Water Res., 120 (2017)
88–116.
- A.H. Zyoud, A. Zubi, S.H. Zyoud, M.H. Hilal, S. Zyoud,
N. Qamhieh, A. Hajamohideen, H.S. Hilal, Kaolin-supported
ZnO nanoparticle catalysts in self-sensitized tetracycline
photodegradation: zero-point charge and pH effects, Appl.
Clay Sci., 182 (2019) 105294, doi: 10.1016/j.clay.2019.105294.
- J.D. Hu, Y. Zevi, X.M. Kou, J. Xiao, X.J. Wang, Y. Jin, Effect
of dissolved organic matter on the stability of magnetite
nanoparticles under different pH and ionic strength conditions,
Sci. Total Environ., 408 (2010) 3477–3489.
- Y.T. Hameed, A. Idris, S.A. Hussain, N. Abdullah, H.C. Man,
F. Suja, A tannine-based agent for coagulation and flocculation
of municipal wastewater as a pretreatment for biofilm process,
J. Cleaner Prod., 182 (2018) 198–205.
- Z.Z. Abidin, N.S.M. Shamsudin, N. Madehi, S. Sobri,
Optimization of a method to extract the active coagulant agent
from Jatropha curcas seeds for use in turbidity removal, Ind.
Crops Prod., 41 (2013) 319–323.
- A. Brunelli, J. Pojana, S. Callegaro, A. Marcomini, Agglomeration
and sedimentation of titanium dioxide nanoparticles (n-TiO2) in
synthetic and real waters, J. Nanopart. Res., 15 (2013) 3–10.