References

  1. A. Umar, M.M. Rahman, Y.-B. Hahn, Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires, Talanta, 77 (2009) 1376–1380.
  2. A. Safavi, F. Abbasitabar, M.R. Hormozi Nezhad, Simultaneous kinetic spectrophotometric determination of isoniazid and hydrazine using H-point standard addition method, Chem. Anal. (Warsaw), 52 (2007) 835–845.
  3. D. Jayasri, S. Sriman Narayanan, Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode, J. Hazard. Mater., 144 (2007) 348–354.
  4. J.S. Budkuley, Mikrochim, Determination of hydrazine and sulfite in the presence of one another, Mikrochim. Acta, 108 (1992) 103–105.
  5. A. Safavi, M.A. Karimi, Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates, Talanta, 58 (2002) 785–792.
  6. J. Wang, Z. Lu, Electrocatalysis and determination of hydrazine compounds at glassy carbon electrodes coated with mixedvalent ruthenium (III, II) cyanide films, Electroanalysis, 1 (1989) 517–521.
  7. M. Ebadi, Electrocatalytic oxidation and flow amperometric detection of hydrazine on a dinuclear ruthenium phthalocyanine-modified electrode, Can. J. Chem., 81 (2003) 161–168.
  8. R. Gilbert, R. Rioux, Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine, Anal. Chem., 56 (1984) 106–109.
  9. B. Alvarez-Ruiz, R. Gomez, J.M. Orts, J.M. Feliu, Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media, J. Electrochem. Soc., 149 (2002) D35–D45.
  10. K. Korinek, J. Koryta, M. Musilova, Electrooxidation of hydrazine on mercury, silver, and gold electrodes in alkaline solutions, J. Electroanal. Chem., 21 (1969) 319–327.
  11. M.D. Garcia-Azorero, M.L. Marcos, J.G. Velasco, Influence of changes in the total surface area and in the crystalline surface composition of Pt electrodes on their electrocatalytic properties with respect to the electro-oxidation of hydrazine, Electrochim. Acta, 39 (1994) 1909–1914.
  12. M. Fleischmann, K. Korinek, D. Pletcher, Oxidation of hydrazine at a nickel anode in alkaline solution,
    J. Electroanal. Chem., 34 (1972) 499–503.
  13. H.R. Zare, N. Nasirizadeh, Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine, Electrochim. Acta, 52 (2007) 4153–4160.
  14. A. Salimi, R. Hallaj, Adsorption and reactivity of chlorogenic acid at a hydrophobic carbon ceramic composite electrode: application for the amperometric detection of hydrazine, Electroanalysis, 16 (2004) 1964–1971.
  15. A. Salimi, L. Miranzadeh, R. Hallaj, Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives, Talanta, 75 (2008) 147–156.
  16. R. Ojani, J.B. Raoof, B. Norouzi, Acetylferrocene modified carbon paste electrode; a sensor for electrocatalytic determination of hydrazine, Electroanalysis, 20 (2008) 1378–1382.
  17. H.R. Zare, N. Nasirizadeh, Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode, Electroanalysis, 18 (2006) 507–512.
  18. L. Niu, T.Y. You, J.Y. Gui, E.K. Wang, S.J. Dong, Electrocatalytic oxidation of hydrazines
    at a 4-pyridylhydroquinone selfassembled platinum electrode and its application to amperometric detection in capillary electrophoresis, J. Electroanal. Chem., 448 (1998) 79–86.
  19. T.Y. You, L. Niu, J.Y. Gui, S.J. Dong, E.K. Wang, Detection of hydrazine, methylhydrazine and isoniazid by capillary electrophoresis with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode,
    J. Pharm. Biomed. Anal., 19 (1999) 231–237.
  20. A. Abbaspour, M.A. Kamyabi, Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films, J. Electroanal. Chem., 576 (2005) 73–83.
  21. A. Salimi, K. Abdi, Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol–gel technique: application to amperometric detection of hydrazine and hydroxyl amine, Talanta, 63 (2004) 475–483.
  22. H. Razmi, A. Azadbakht, M. Hsard, Application of a palladium hexacyanoferrate film-modified aluminum electrode to electrocatalytic oxidation of hydrazine, Anal. Sci., 21 (2005) 1317–1323.
  23. A. Kalaivani, S.S. Narayanan, Fabrication of CdSe quantum dots @ nickel hexacyanoferrate core–shell nanoparticles modified electrode for the electrocatalytic oxidation of hydrazine, J. Mater. Sci.: Mater. Electron., 29 (2018) 20146–20155.
  24. R. Sha, S.S. Jones, N. Vishnu, B. Soundiraraju, S. Badhulik, A novel biomass derived carbon quantum dots for highly sensitive and selective detection of hydrazine, Electroanalysis, 30 (2018) 1–6.
  25. S.K. Kim, Y.N. Jeong, M.S. Ahmad, J.M. You, H.C. Choi, S. Jeon, Electrocatalytic determination of hydrazine by a glassy carbon electrode modified with PEDOP/MWCNTs-Pd nanoparticles, Sens. Actuators, B, 153 (2011) 246–251.
  26. B. Song, M. Chen, S. Ye, P. Xu, G. Zeng, J. Gong, J. Li, P. Zhang, W. Cao, Effects of multi-walled carbon nanotubes on metabolic function of the microbial community in riverine sediment contaminated with phenanthrene, Carbon, 144 (2019) 1–7.
  27. B. Song, P. Xu, G. Zeng, J. Gong, P. Zhang, H. Feng, Y. Liu, X. Ren, Carbon nanotube-based environmental technologies: the adopted properties, primary mechanisms, and challenges, Rev. Environ. Sci. Biotechnol.,
    17 (2018) 571–590.
  28. L. Zheng, J.F. Song, Ni(II)-baicalein complex modified multiwall carbon nanotube past electrode toward electrocatalytic oxidation of hydrazine, Talanta, 79 (2009) 319–326.
  29. Z. Wang, Q. Xu, H.Q. Wang, Q. Yang, J.H. Yu, Y.D. Zhaao, Hydrogen peroxide biosensor based on direct electron transfer of horseradish peroxidas with vapor deposited duantum dotes, Sens. Actuators, B, 138 (2009) 278–282.
  30. Q. Liu, X. Lu, J. Li, X. Yao, Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dotes/carbon nanotubes electrodes, Biosens. Bioelectron., 22 (2007) 3203–3209.
  31. X.Y. Huang, W.J. Zhang, H. Xiao, G.X. Li, An electrochemical investigation of glucose oxidas at a CdS nanoparticles modified electrode, Biosens. Bioelectron., 21 (2005) 817–821.
  32. X.Y. Xu, J.G. Liang, C.G. Hu, F. Wang, S.H. Hu, Z.K. He, A hydrogen peroxide biosensor based on the direct electrochemistry of hemoglobin modified with quantum dotes, J. Biol. Inorg. Chem., 3 (2007) 421–427.
  33. J. Liu, X. Wei, Y. Qu, J. Cao, C. Chen, H, Jiang, Aqueous synthesis and bio-imaging application of highly luminescent and low cytotoxicity Mn2+-doped ZnSe nanocrystals, Mater. Lett., 65 (2011) 2139–2141.
  34. Y. He, H.F. Wang, X.P. Yan, Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids, Anal. Chem., 80 (2008) 3832–3837.
  35. W.S. Zou, D. Sheng, X. Ge, J.-Q. Qiao, H.-Z. Lian, Roomtemperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots, Anal. Chem., 83 (2011) 30–37.
  36. M.E. Pacheco, C.B. Castells, L. Bruzzone, Mn-doped ZnS phosphorescent quantum dots: coumarins optical sensors, Sens. Actuators, B, 238 (2017) 660–666.
  37. P. Deng, L. Lu, T. Tan, Y. Jin, X. Fan, W. Cao, X. Tian, Novel phosphorescent Mn-doped ZnS quantum dots as a probe for the detection of L-tyrosine in human urine, Anal. Methods, 9 (2017) 287–293.
  38. J.S. Pinter, K.L. Brown, P.A.D. Young, G.F. Peaslee, Amperometric detection of hydrazine by cyclivoltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes, Talanta, 71 (2007) 1219–1225.
  39. L. Zheng, J. Song, Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine, Sens. Actuators, B, 135 (2009) 650–655.
  40. G. Wang, C. Zhang, X. He, Z. Li, X. Zhang, L. Wang, B. Fang, Detection of hydrazine based on nano-Au deposited on porous- TiO2 film, Electrochim. Acta, 55 (2010) 7204–7210.
  41. N. Maleki, A. Safavi, E. Farjami, F. Tajabadi, Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine, Anal. Chim. Acta, 611 (2008) 151–155.
  42. C.C. Yang, A.S. Kumar, M.C. Kuo, S.H. Chien, J.M. Zen, Copper–palladium alloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine, Anal. Chim. Acta, 554 (2005) 66–73.
  43. H. Zhang, J. Huang, H. Hou, T. You, Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/ carbon nanofibers, Electroanalysis, 21 (2009) 1869–1872.
  44. C. Bathchelor-McAuley, C.E. Banks, A.O. Simm, T.G.J. Jones, R.G. Compton, The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array, Analyst, 131 (2006) 106–110.
  45. X. Ji, C.E. Banks, A.F. Holloway, K. Jurkschat, C.A. Thorogood, G.G. Wildgoose, R.G. Compton, Palladium
    sub-nanoparticle decorated ‘bamboo’ multi-walled carbon nanotubes exhibit electrochemical metastability: voltammetric sensing in otherwise inaccessible pH ranges, Electroanalysis, 18 (2006) 2481–2485.
  46. M. Faisal, Md.A. Rashed, M.M. Abdullah, F.A. Harraz, M. Jalalah, M.S. Al-Assiri, Efficient hydrazine electrochemical sensor based on PANI doped mesoporous SrTiO3 nanocomposite modified glassy carbon electrode, J. Electroanal. Chem., 879 (2020) 114805, doi: 10.1016/j.jelechem.2020.114805.
  47. A. Mejri, A. Mars, H. Elfil, A.H. Hamzaoui, Curcumin graphite pencil electrode modified with molybdenum disulfide nanosheets decorated gold foams for simultaneous quantification of nitrite and hydrazine in water samples, Anal. Chim. Acta, 1137 (2020) 19–27.
  48. S. Antherjanam, B. Saraswathyamma, Simultaneous electrochemical determination of hydrazine and hydroxylamine on a thiadiazole derivative modified pencil graphite electrode, Mater. Chem. Phys., 275 (2022) 125223, doi: 10.1016/j. matchemphys.2021.125223.
  49. Y. Jia, N. Shang, X. He, A. Nsabimana, Y. Gao, J. Ju, X. Yang, Y. Zhang, Electrocatalytically active cuprous oxide nanocubes anchored onto macroporous carbon composite for hydrazine detection, J. Colloid Interface Sci., 606 (2022) 1239–1248.