References

  1. R.R.Z. Tarpani, C. Alfonsín, A. Hospido, A. Azapagic, Life cycle environmental impacts of sewage sludge treatment methods for resource recovery considering ecotoxicity of heavy metals and pharmaceutical and personal care products, J. Environ. Manage., 260 (2020) 109643.
  2. S. Ozdemir, S.M. Turp, N. Oz, Simultaneous dry-sorption of heavy metals by porous adsorbents during sludge composting, Environ. Eng. Res., 25 (2020) 258–265.
  3. M.M. Mian, G.J. Liu, B. Fu, Conversion of sewage sludge into environmental catalyst and microbial fuel cell electrode material: a review, Sci. Total Environ., 666 (2019) 525–539.
  4. A. Zaker, Z. Chen, X.L. Wang, Q. Zhang, Microwave-assisted pyrolysis of sewage sludge: a review, Fuel Process. Technol., 187 (2019) 84–104.
  5. J.H. Seo, N. Kim, M. Park, S. Lee, S. Yeon, D. Park, Evaluation of metal removal performance of rod-type biosorbent prepared from sewage-sludge, Environ. Eng. Res., 25 (2020) 700–706.
  6. V. Fristak, M. Pipiska, G. Soja, Pyrolysis treatment of sewage sludge: a promising way to produce phosphorus fertilizer, J. Clean. Prod., 172 (2018) 1772–1778.
  7. J.W. Jin, Y.N. Li, J.Y. Zhang, S.C. Wu, Y.C. Cao, P. Liang, J. Zhang, M.H. Wong, M.Y. Wang, S.D. Shan, P. Christie, Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge, J. Hazard. Mater., 320 (2016) 417–426.
  8. G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, A.H. Al-Muhtaseb, M. Naushad, F.J. Stadler, Highly efficient
    Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B, Catal. Today, 335 (2019) 437–451.
  9. G. Sharma, A. Kumar, M. Naushad, B. Thakur, D.N. Vo, B. Gao, A.A. Al-Kahtani, F.J. Stadler,
    Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-clpoly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel, J. Hazard. Mater., 416 (2021) 125714.
  10. G. Sharma, M. Naushad, D. Pathania, A. Mittal, G.E. El-desoky, Modification of Hibiscus cannabinus fiber by graft copolymerization: application for dye removal, Desal. Water Treat., 54 (2015) 3114–3121.
  11. T.Y. Li, Y.Z. He, X.X. Peng, Efficient removal of tetrabromobisphenol A (TBBPA) using sewage sludge-derived biochar: adsorptive effect and mechanism, Chemosphere, 251 (2020) 126370.
  12. Q.L. Liang, Y.C. Liu, M.Y. Chen, L.L. Ma, B. Yang, L.L. Li, Q. Liu, Optimized preparation of activated carbon from coconut shell and municipal sludge, Mater. Chem. Phys., 241 (2020) 122327.
  13. E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, Biochar production by sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis, 101 (2013) 72–78.
  14. L. Tang, J.F. Yu, Y. Pang, G.M. Zeng, Y.C. Deng, J.J. Wang, X.Y. Ren, S.J. Ye, B. Peng, H.P. Feng, Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal, Chem. Eng. J., 336 (2018) 160–169.
  15. L.Y. Li, X.D. Gong, O. Abida, Waste-to-resources: exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption, Waste Manage., 87 (2019) 375–386.
  16. J. Wei, Y.T. Liu, J. Li, Y.H. Zhu, H. Yu, Y.Z. Peng, Adsorption and co-adsorption of tetracycline and doxycycline by onestep synthesized iron loaded sludge biochar, Chemosphere, 236 (2019) 124254.
  17. Y.F. Ma, P. Li, L. Yang, L. Wu, L.Y. He, F. Gao, X.B. Qi, Z.L. Zhang, Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal, Ecotoxicol. Environ. Saf., 196 (2020) 110550.
  18. W.R. Hu, Y. Xie, S. Lu, T.H. Xie, Y.K. Zhang, Y.B. Wang, One-step synthesis of nitrogen-doped sludge carbon as a bifunctional material for the adsorption and catalytic oxidation of organic pollutants, Sci. Total Environ., 680 (2019) 51–60.
  19. X. Huang, D. Wei, X.W. Zhang, D.W. Fan, X. Sun, B. Du, Q. Wei, Synthesis of amino-functionalized magnetic aerobic granular sludge-biochar for Pb(II) removal: adsorption performance and mechanism studies, Sci. Total Environ., 685 (2019) 681–689.
  20. X.R. Jing, Y.Y. Wang, W.J. Liu, Y.K. Wang, H. Jiang, Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar, Chem. Eng. J., 248 (2014) 168–174.
  21. S.Q. Tang, N.N. Shao, C.M. Zheng, F. Yan, Z.T. Zhang, Aminofunctionalized sewage sludge-derived biochar as sustainable efficient adsorbent for Cu(II) removal, Waste Manage., 90 (2019) 17–28.
  22. A. Ahmad, N. Khan, B.S. Giri, P. Chowdhary, P. Chaturvedi, Removal of methylene blue dye using rice husk, cow dung and sludge biochar: characterization, application, and kinetic studies, Bioresour. Technol., 306 (2020) 123202.
  23. P. Xiao, L. Xu, X.D. Wang, Z.B. Chang, Co-pyrolysis characteristics of coal and sludge blends using thermogravimetric analysis, Environ. Prog. Sustainable Energy, 34 (2015) 1780–1789.
  24. Q. Dong, S.P. Zhang, B. Wu, M. Pi, Y.Q. Xiong, H.Y. Zhang, Co-pyrolysis of sewage sludge and rice straw: thermal behavior and char characteristic evaluations, Energy Fuels, 34 (2020) 607–615.
  25. T. Wang, Y.C. Chen, J.P. Li, Y.J. Xue, J.X. Liu, M. Mei, H.B. Hou, S. Chen, Co-pyrolysis behavior of sewage sludge and rice husk by TG-MS and residue analysis, J. Clean. Prod., 250 (2020) 119557.
  26. Z.P. Wang, X.Q. Shu, H.N. Zhu, L.K. Xie, S.H. Cheng, Y.X. Zhang, Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments, Environ. Technol., 41 (2018) 1347–1357.
  27. B. Zhao, X.Y. Xu, S.C. Xu, X. Chen, H.B. Li, F.Q. Zeng, Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride, Bioresour. Technol., 243 (2017) 375–383.
  28. S.H. Deng, H.Z. Tan, X.B. Wang, F.X. Yang, R.J. Cao, Z. Wang, R.H. Ruan, Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char, Bioresour. Technol., 239 (2017) 302–310.
  29. Z.P. Wang, L.K. Xie, K. Liu, J. Wang, H.N. Zhu, Q. Song, X.Q. Shu, Co-pyrolysis of sewage sludge and cotton stalks, Waste Manage., 89 (2019) 430–438.
  30. X.B. Wang, S.H. Deng, H.Z. Tan, A. Adeosun, M. Vujanovic, F.X. Yang, N. Duic, Synergetic effect of sewage sludge and biomass co-pyrolysis: a combined study in thermogravimetric analyzer and a fixed bed reactor, Energy Convers. Manage., 118 (2016) 399–405.
  31. J.W. Jin, M.Y. Wang, Y.C. Cao, S.C. Wu, P. Liang, Y.N. Li, J.Y. Zhang, J. Zhang, M.H. Wong, S.D. Shan, P. Christie, Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals, Bioresour. Technol., 228 (2017) 218–226.
  32. B. Khiari, M. Jeguirim, Pyrolysis of grape marc from Tunisian wine industry: feedstock characterization, thermal degradation and kinetic analysis, Energies, 11 (2018) 730.
  33. A. Ibn Ferjani, M. Jeguirim, S. Jellali, L. Limousy, C. Courson, H. Akrout, N. Thevenin, L. Ruidavets, A. Muller, S. Bennici, The use of exhausted grape marc to produce biofuels and biofertilizers: effect of pyrolysis temperatures on biochars properties, Renewable Sustainable Energy Rev., 107 (2019) 425–433.
  34. H.J. Huang, T. Yang, F.Y. Lai, G.Q. Wu, Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar, J. Anal. Appl. Pyrolysis, 125 (2017) 61–68.
  35. J.H. Qu, Y.H. Yuan, Q.J. Meng, G.S. Zhang, F.X. Deng, L. Wang, Y. Tao, Z. Jiang, Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β-cyclodextrin functionalized cellulose: characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater., 400 (2020) 123142.
  36. Q.D. Chen, H. Liu, J. Ko, H.N. Wu, Q.Y. Xu, Structure characteristics of bio-char generated from co-pyrolysis of wooden waste and wet municipal sewage sludge, Fuel Process. Technol., 183 (2019) 48–54.
  37. Y.Q. Yi, G.Q. Tu, D.Y. Zhao, P.E. Tsang, Z.Q. Fang, Biomass waste components significantly influence the removal of Cr(VI) using magnetic biochar derived from four types of feedstocks and steel pickling waste liquor, Chem. Eng. J., 360 (2019) 212–220.
  38. W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.M. Fortuna, I. Dallmeyer, M. Harcia-Perez, Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties, Biomass Bioenergy, 84 (2016) 37–48.
  39. S. Saadat, E. Raei, N. Talebbeydokhti, Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar: comparative study of various modifying cations and RSM based optimization of pyrolysis parameters, J. Environ. Manage., 225 (2018) 75–83.
  40. Q.Q. Yin, M.T. Liu, H.P. Ren, Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water, J. Environ. Manage., 249 (2019) 109410.
  41. J.W. Dai, X.F. Meng, Y.H. Zhang, Y.J. Huang, Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water, Bioresour. Technol., 311 (2020) 123455.
  42. D.D. Sewu, P. Boakye, S.H. Woo, Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste, Bioresour. Technol., 224 (2017) 206–213.
  43. Y. Zhang, M. Li, J.C. Li, Y.Y. Yang, X. Liu, Surface modified leaves with high efficiency for the removal of aqueous Cr(VI), Appl. Surf. Sci., 484 (2019) 189–196.
  44. M. Choudhary, R. Kumar, S. Neogi, Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water, J. Hazard. Mater., 392 (2020) 122441.
  45. Y.T. Xu, J.X. Bao, X. Zhang, W.S. Li, Functionalized polyethersulfone nanofibrous membranes with ultra-high adsorption capacity for organic dyes by one-step electrospinning, J. Colloid Interface Sci., 533 (2019) 526–538.
  46. Z.U. Ahmad, L.G. Yao, J. Wang, D.D. Gang, F. Islam, Q.Y. Lian, M.E. Zappi, Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: characterizations, adsorption study and adsorption mechanism, Chem. Eng. J., 359 (2019) 814–826.
  47. F.A. Razmi, N. Ngadi, S. Wong, I.B. Inuwa, L.A. Opotu, Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent, J. Clean. Prod., 231 (2019) 98–109.
  48. Y.F. Ma, M. Li, P. Li, L. Yang, L. Wu, F. Gao, X.B. Qi, Z.L. Zhang, Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal, Bioresour. Technol., 319 (2021) 124199.
  49. J. Hoslett, H. Ghazal, N. Mohamad, H. Jouhara, Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material, Sci. Total Environ., 714 (2020) 136832.
  50. T. Suwunwong, N. Hussain, S. Chantrapromma, K. Phoungthong, Facile synthesis of corncob biochar via in-house modified pyrolysis for removal of methylene blue in wastewater, Mater. Res. Express, 7 (2020) 015518.
  51. L. Lonappan, T. Rouissi, R.K. Das, S.K. Brar, A.A. Ramirez, M. Verma, R.Y. Surampalli, J.R. Valero, Adsorption of methylene blue on biochar microparticles derived from different waste materials, Waste Manage., 49 (2016) 537–544.
  52. J.H. Park, J.J. Wang, Y.L. Meng, Z. Wei, R.D. DeLaune, D.C. Seo, Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures, Colloids Surf., A, 572 (2019) 274–282.
  53. S.S Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X.D. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  54. D.A.G. Sumalinog, S.C. Capareda, M.D.G. de Luna, Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes, J. Environ. Manage., 210 (2018) 255–262.
  55. N. Chaukura, E.C. Murimba, W. Gwenzi, Sorptive removal of methylene blue from simulated wastewater using biochars derived from pulp and paper sludge, Environ. Technol. Innov., 8 (2017) 132–140.
  56. S.S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang, X.D. Li, Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism, J. Mol. Liq., 220 (2016) 432–441.
  57. G.D. Degermenci, N. Degermenci, V. Ayvaoglu, E. Durmaz, D. Cakir, E. Akan, Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies, J. Clean. Prod., 225 (2019) 1220–1229.
  58. G. Sharma, B. Thakur, A. Kumar, S. Sharma, M. Naushad, F.J. Stadler, Atrazine removal using chitin-cl-poly(acrylamide-coitaconic acid) nanohydrogel: Isotherms and pH responsive nature, Carbohydr. Polym., 241 (2020) 116258.
  59. Y.Q. Yang, N. Chen, C.P. Feng, M. Li, Y. Gao, Chromium removal using a magnetic corncob biochar/polypyrrole composite by adsorption combined with reduction: reaction pathway and contribution degree, Colloids Surf., A, 556 (2018) 201–209.
  60. Y. Zhu, B.J. Yi, Q.X. Yuan, Y.L. Wu, M. Wang, S.P. Yan, Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar, RSC Adv., 8 (2018) 19917–19929.
  61. S. Liu, J.H. Li, S. Xu, M.Z. Wang, Y.C. Zhang, X.H. Xue, A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature, Bioresour. Technol., 282 (2019) 48–55.
  62. B. Chen, H.N. Zhao, S.J. Chen, F.X. Long, B. Huang, B.Q. Yang, X.J. Pan, A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater, Chem. Eng. J., 356 (2019) 69–80.