References

  1. S.M. Shaban, E.A. Badr, M.A. Shenashen, A.A. Farag, Fabrication and characterization of encapsulated Gemini cationic surfactant as anti-corrosion material for carbon steel protection in down-hole pipelines, Environ. Technol. Innovation, 23 (2021) 101603, doi: 10.1016/j.eti.2021.101603.
  2. S.M. Shaban, M.F. Elbhrawy, A.S. Fouda, S.M. Rashwan, H.E. Ibrahim, A.M. Elsharif, Corrosion inhibition and surface examination of carbon steel 1018 via N-(2-(2-hydroxyethoxy) ethyl)-N,N-dimethyloctan-1-aminium bromide in 1.0 M HCl, J. Mol. Struct., 1227 (2021) 129713, doi: 10.1016/j.molstruc. 2020.129713.
  3. E.A. Badr, H.H.H. Hefni, S H. Shafek, S.M. Shaban, Synthesis of anionic chitosan surfactant and application in silver nanoparticles preparation and corrosion inhibition of steel, Int. J. Biol. Macromol., 157 (2020) 187–201.
  4. A. Labena, A. Hamed, E.H.I. Ismael, S.M. Shaban, Novel gemini cationic surfactants: thermodynamic, antimicrobial susceptibility, and corrosion inhibition behavior against Acidithiobacillus ferrooxidans,
    J. Surfactants Deterg., 23 (2020) 991–1004.
  5. S. Abd El Wanees, A.B. Radwan, M.A. Alsharif, S.M. Abd El Haleem, Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions, Mater. Chem. Phys., 190 (2018) 79–95.
  6. S. Abd El Wanees, M.I. Alahmdi, M. Abd El Azzem, H.E. Ahmed, 4,6-Dimethyl-2-oxo-1,2-dihydro-pyridine-3- carboxylic acid as an inhibitor towards the corrosion of C-steel in acetic acid, Int. J. Electrochem. Sci., 11 (2016) 3448–3466.
  7. S. Abd El Wanees, A. Diab, O. Azazy, M.A. El Azim, Inhibition effect of N-(pyridine-2-yl-carbamothioyl) benzamide on the corrosion of C-steel in sulfuric acid solutions, J. Dispersion Sci. Technol., 35 (2016) 1571–1580.
  8. S.M. Shaban, I. Aied, A.H. Moustafa, H. Aljoboury, Some alginates polymeric cationic surfactants; surface study and their evaluation as biocide and corrosion inhibitors, J. Mol. Liq., 273 (2019) 164–176.
  9. W.P. Singh, J.O. Bockris, Toxicity Issues of Organic Corrosion Inhibitors: Applications of QSAR Model, NACE-96225, Paper Presented at the CORROSION 96, Denver, Colorado, March 1996.
  10. M.A. Deyab, R. Essehli, B. El Bali, Performance evaluation of phosphate NaCo(H2PO3)2·H2O as a corrosion inhibitor for aluminum in engine coolant solutions, RSC Adv., 5 (2015) 48868–48874.
  11. S. Abd El Wanees, S. Nooh, A. Farouk, S.M. Abd El Haleem, Corrosion inhibition of aluminum in sodium hydroxide solutions using some inorganic anions, J. Dispersion Sci. Technol., (2021), doi:10.1080/01932691.2021.1914647.
  12. E.E. Abd El Aal, S. Abd El Wanees, A. Farouk, S.M. Abd El Haleem, Factors affecting the corrosion behavior of aluminium in acid solutions. II. Inorganic additives as corrosion inhibitors for Al in HCl solutions, Corros. Sci., 68 (2013) 14–25.
  13. S.M. Abd El Haleem, S. Abd El Wanees, E.E. Abd El Aal, A. Diab, Environmental factors affecting the corrosion behavior of reinforcing steel. IV. Variation in the pitting corrosion current in relation to the concentration of the aggressive and the inhibitive anions, Corros. Sci., 52 (2010) 1675–1580.
  14. M.A. Deyab, S.S. Abd El-Rehim, Inhibitory effect of tungstate, molybdate and nitrite ions on the carbon steel pitting corrosion in alkaline formation water containing Cl ion, Electrochim. Acta, 53 (2007) 1754–1760.
  15. S.A.M. Refaey, S.S. Abd El-Rehim, F. Taha, M.B. Saleh, R.A. Ahmed, Inhibition of chloride localized corrosion of mild steel by PO43−, CrO42−, MoO42−, and NO2 anions, Appl. Surf. Sci., 158 (2000) 190–196.
  16. Z.H. Dong, X.P. Guo, J.X. Zheng, L.M. Xu, Investigation on inhibition of CrO42− and MoO42− ions on carbon steel pitting corrosion by electrochemical noise analysis, J. Appl. Electrochem., 32 (2002) 395–400.
  17. E.E. Abd El Aal, S. Abd El Wanees, Galvanostatic study of the breakdown of Zn passivity by sulfate anions, Corros. Sci., 51 (2009) 1780–1788.
  18. A.M. Shams El-Din, S.M. Abd El Haleem, J.M. Abd El Kader, Studies on the pitting corrosion of zinc in aqueous solutions II. Measurement of pitting corrosion currents operating under natural conditions, J. Electroanal. Chem., 65 (1975) 335–349.
  19. S. Abd El Wanees, A. Abd El Aal Mohamed, M. Abd El Azeem, A.N. Abd El Fatah, Pitting corrosion currents of tin in relation to the concentration of the inhibitive and corrosive anions under natural corrosion conditions, Int. J. Electrochem. Sci., 3 (2008) 1005–1015.
  20. S. Abd El Wanees, A.B. Radwan, M.A. Alsharif, S.M. Abd El Haleem, Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions, Mater. Chem. Phys., 190 (2017) 79–95.
  21. F.P. Glasser, K.K. Sagoe-Crentsil, Steel in concrete: Part II electron microscopy analysis, Mag. Concr. Res., 41 (1989) 213–220.
  22. A. Chen, F. Cao, X. Liao, W. Liu, L. Zheng, J. Zhang, C. Cao, Study of pitting corrosion on mild steel during wet-dry cycles by electrochemical noise analysis based on chaos theory, Corros. Sci., 66 (2013) 183–195.
  23. S. Abd El Wanees, A. Abd El Aal, E.E. Add El Aal, Effect of polyethylene glycol on pitting corrosion of cadmium in alkaline solution, Br. Corros. J., 28 (1993) 222–226.
  24. S.M. Abd El Haleem, A. Abd El Aal, Pitting corrosion currents on steel in relation to the concentration of the inhibitive and corrosive anions under natural corrosion conditions, Br. Corros. J., 14 (1979) 226–230.
  25. S.M. Abd El Haleem, A. El Kot, A.A. Abdel Fattah, W. Tayor, Variation of pitting corrosion on iron surface, Corros. Preven. Control, 33 (1986) 151–157.
  26. E.E. Abd El Aal, Measurements of pitting corrosion currents of zinc in near neutral media, Corros. Sci., 44 (2002) 2041–2053.
  27. E.E. Abd El Aal, S. Abd El Wanees A. Diab, S.M. Abd El Haleem, Environmental factors affecting the corrosion behavior of reinforcing steel III. Measurement of pitting corrosion currents of steel in Ca(OH)2 solutions under natural, Corros. Sci., 51 (2009) 1611–1618.
  28. S.M. Abd El Haleem, S. Abd El Wanees, Chloride induced pitting corrosion of nickel in alkaline solutions and its inhibition by organic amines, Mater. Chem. Phys., 128 (2011) 418–426.
  29. P.C. Pistorius, G.T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability, Philos. Trans. R. Soc. London, Ser. A, 341 (1992) 531–559.
  30. S.T. Pride, J.R. Scully, J.L. Hudson, Metastable pitting of aluminum and criteria for the transition to stable pit growth, J. Electrochem. Soc., 141 (1994) 3029–3040.
  31. N.J. Laycock, R.C. Newman, Localised dissolution kinetics, salt films and pitting potentials, Corros. Sci., 39 (1997) 1771–1790.
  32. G.S. Frankel, L. Stockert, F. Hunkeler, H. Bohn, Perspective on metastable pitting of stainless steel, Corrosion, 43 (1987) 429–436.
  33. T. Li, J. Wu, G.S. Frankel, Localized corrosion: passive film breakdown vs. Pit growth stability, Part VI: Pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials, Corros. Sci., 182 (2021) 109277, doi: 10.1016/j.corsci.2021.109277.
  34. D.E. Williams, C. Westcott, M. Fleischmann, Studies of the initiation of pitting corrosion on stainless steels,
    J. Electroanal. Chem., 180 (1984) 549–564.
  35. E. Williams, C. Westcott, M. Fleischmann, Stochastic models of pitting corrosion of stainless steels: I. Modeling of the initiation and growth of pits at constant potential, J. Electrochem. Soc., 132 (1985) 1796–1804.
  36. P.C. Pistorius, G.T. Burstein, Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel, Corros. Sci., 36 (1994) 525–538.
  37. G.S. Frankel, L. Stockert, F. Hunkeler, H. Bohni, Metastable pitting of stainless steel, Corrosion, 43 (1987) 429–436.
  38. J. Xu, L. Jiang, J. Wang, Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement, Constr. Build. Mater., 23 (2009) 1902–1908.
  39. H. Rocha, The breakdown by chlorine ions of the passivation layers of austanic 18/8 Cr/Ni steels, Werkst. Korros., 11 (1960) 352–356.
  40. W. Schwenk, Theory of stainless steel pitting, Corrosion, 20 (1964) 129t–137t.
  41. K. Schwabe, G.Z. Ditez, Zur Passivität des Nickels, Z. Phys. Chem., 62 (1958) 751–759.
  42. J. Sinko, Challenges of chromate inhibitor pigments replacement, inorganic coatings, Prog. Org. Coat., 42 (2001) 267–282.
  43. H. Tristijanto, M. NoerIlman, P.T. Iswanto, Corrosion inhibition of welded of X-52 steel pipelines by sodium molybdate in 3.5% NaCl solution, Egypt. J. Pet., 29 (2020) 155–162.
  44. J. Augustynski, in: R.P. Frankenthal, J. Kruger, Eds., Passivity in Metals, Electrochemical Society, Princeton, NJ, 1987, p. 989.
  45. J. Yang, Y. Lu, Z. Guo, J. Gu, C. Gu, Corrosion behavior of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution, Corros. Sci., 130 (2018) 64–75.
  46. Y. Ma, Y. Li, F. Wang, The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in a tropic marine environment, Mater. Chem. Phys., 112 (2008) 844–852.
  47. F.B. Ravari, S. Mohammadi, A. Dadgarinezhad, Corrosion inhibition of mild steel in simulated cooling water by blends of molybdate, nitrite, and picrate as a new anodic inhibitor, Anti- Corros. Methods Mater., 59 (2012) 182–189.
  48. W.D. Robertson, Electrochem, molybdate, and tungstate as corrosion inhibitors and the mechanism of inhibition, J. Electrochem. Soc., 98 (1951) 91–100.
  49. E. Ose, T. Yu. Zimina, M.N. Fokin, Dissolution, and inhibition of iron in a neutral solution containing nonstoichiometric surface oxides, Zashch Met., 21 (1985) 909–913.
  50. G.D. Wilcox, D.R. Gabe, Passivation studies using group V1A anions. Part V: Cathodic treatment of zinc, Br. Corros. J., 22 (1987) 254–258.
  51. K.K. Chew, D.R. Gabe, Alternatives to chromate for inhibition in deaerated acid solutions, Corros. Preven. Control, 26 (1979) 5–7.
  52. B. Jabeera, S.M.A. Shibli, T.S. Anirudhan, Synergistic inhibitive effect of tartrate and tungstate in preventing steel corrosion in aqueous media, Appl. Surf. Sci., 252 (2006) 3520–3524.
  53. M. Abd El Kader, A.A. El Warraky, A.M. Abd El Aziz, Corrosion inhibition of mild steel by sodium tungstate in neutral solution. Part 1: Behaviour in distilled water, Br. Corros. J., 33 (1998) 139–144.
  54. S Abd El Wanees, EE Abd El Aal, N-Phenylcinnamimide and some of its derivatives as inhibitors for corrosion of lead in HCl solutions, Corros. Sci., 52 (2010) 338–344.
  55. O.I. Balytes, O.O. Krokhrnal'nyl, Pitting corrosion of 12Kh 18AG 18Sh steel in chloride solutions, Mater. Sci., 35 (1999) 389–394.
  56. S.M. Abd El-Haleem, S. Abd El-Wanees, Chloride induced pitting corrosion of nickel in alkaline solutions and its inhibition by organic amines, Mater. Chem. Phys., 128 (2011) 418–426.
  57. P.C. Pistorius, G T Burstein, Metastable pitting corrosion of stainless steel and the transition to stability, Philos. Trans. R. Soc. London, Ser. A, 341 (1992) 531–559.
  58. S. Abd El Wanees, A.A.H. Bukhari, N.S. Alatawi, S. Salem, S. Nooh, S.K. Mustafa, S.S. Elyan, Thermodynamic and adsorption studies on the corrosion inhibition of Zn by 2,2'-dithiobis(2,3-dihydro-1,3-benzothiazole) in HCl solutions, Egypt. J. Chem., 64 (2021) 547–559.
  59. S.T. Pride, J.R. Scully, J.L. Hudson, Metastable pitting of Al and criteria for the transition to stable pit growth, J. Electrochem. Soc., 141 (1994) 3028–3040.
  60. N.J. Laycock, R.C. Newman, Localised dissolution kinetics, salt films and pitting potentials, Corros. Sci., 39 (1997) 1771–1790.
  61. M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, D.S. McPhail, Why stainless steel corrodes, Nature, 415 (2002) 770–774.
  62. Y. Zuo, S. Fu, The effect of potential on metastable pitting of amorphous Ni alloy, Corros. Sci., 39 (1997) 465–471.
  63. S. Abd El Wanees, S.H. Seda, Corrosion inhibition of zinc in aqueous acidic media using a novel synthesized Schiff base – an experimental and theoretical study, J. Dispersion Sci. Technol., 40 (2019) 1813–1826.
  64. S.M. Abd El-Haleem, S. Abd El-Wanees, A. Bahgat, Environmental factors affecting the corrosion behavior of reinforcing steel. V. Role of chloride and sulfate ions in the corrosion of reinforcing steel in saturated Ca(OH)2 solutions, Corros. Sci., 75 (2013) 1–15.
  65. S.M. Abd El Haleem, S. Abd El Wanees, E.E. Abd El Aal, A. Diab, Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solution, Corros. Sci., 52 (2010) 292–302.
  66. S. Abd El Wanees, N.M. El Basiony, A.M. Al-Sabagh, M.A. Alsharif, S. Abd El Haleem, Controlling of H2 gas production during Zn dissolution in HCl solutions, J. Mol. Liq., 248 (2017) 943–952.
  67. S.M. Abd El Haleem, S. Abd El Wanees, A. Farouk, Hydrogen production on aluminum in alkaline media, Prot. Met. Phys. Chem. Surf., 57 (2021) 906–916.
  68. P.C. Pistorius, G.T. Burstein, Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel, Corros. Sci., 36 (1994) 525–538.
  69. C. Alonso, C. Andrade, M. Castellote, P. Castro, Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar, Cem. Concr. Res., 30 (2000) 1047–1055.
  70. C. Alonso, M. Castellote, C. Andrade, P. Castro, Chloride threshold dependence of pitting potential of reinforcements, Electrochim. Acta, 47 (2002) 3469–3481.