References
- N.D.L. Beluci, G.A.P. Mateus, C.S. Miyashiro, N.C. Homem,
R.G. Gomes, M.R. Fagundes-Klen, R. Bergamasco, A.M.S. Vieira,
Hybrid treatment of coagulation/flocculation process followed
by ultrafiltration in
TiO2-modified membranes to improve the
removal of reactive black 5 dye, Sci. Total Environ., 664 (2019)
222–229.
- A.K. Tolkou, M. Mitrakas, I.A. Katsoyiannis, M. Ernst,
A.I. Zouboulis, Fluoride removal from water by composite Al/
Fe/Si/Mg pre-polymerized coagulants: characterization and
application, Chemosphere, 231 (2019) 528–537.
- Z. Li, S. Zhong, H.Y. Lei, R.W. Chen, Q.H.L. Yu, Production
of a novel bioflocculant by Bacillus licheniformis X14 and its
application to low temperature drinking water treatment,
Bioresour. Technol., 100 (2009) 3650–3656.
- Y.L. Zhang, S.P. Li, X.G. Wang, X.L. Ma, W.R. Wang, X.M. Li,
Synthesis, purification and characterization of polyaluminum
ferric chloride (PAFC) with high (Al + Fe)b content, Sep. Purif.
Technol., 146 (2015) 311–316.
- L. Lévesque, C.A. Mizzen, D.R. Mclachlan, P.E. Fraser, Ligand
specific effects on aluminum incorporation and toxicity in
neurons and astrocytes, Brain Res., 877 (2000) 191–202.
- T. Lou, G.P. Cui, J.J. Xun, X.J. Wang, N.Y. Feng, J. Zhang,
Synthesis of a terpolymer based on chitosan and lignin as an
effective flocculant for dye removal, Colloids Surf., A, 537 (2018)
149–154.
- M.F. Elkady, S. Farag, S. Zaki, G. Abu-Elreesh, D. Abd-
El-Haleem, Bacillus mojavensis strain 32A, a bioflocculantproducing
bacterium isolated from an Egyptian salt production
pond, Bioresour. Technol., 102 (2011) 8143–8151.
- L.X. Li, F. Ma, H.M. Zuo, Production of a novel bioflocculant
and its flocculation performance in aluminum removal,
Bioengineered, 7 (2016) 98–105.
- X.W. Bo, B.Y. Gao, N.N. Peng, Y. Wang, Q.Y. Yue, Y.C. Zhao,
Effect of dosing sequence and solution pH on floc properties of
the compound bioflocculant aluminum sulfate dual-coagulant
in kaolin-humic acid solution treatment, Bioresour. Technol.,
113 (2012) 89–96.
- L.X. Li, J. Xing, F. Ma, T. Pan, Introduction of compound
bioflocculant and its application in water treatment, Adv.
J. Food Sci. Technol., 9 (2015) 695–700.
- M. Fujita, M. Ike, S. Tachibana, G. Kitada, S.M. Kim, Z. Inoue,
Characterization of a bioflocculant produced by Citrobacter
sp. TKF04 from acetic and propionic acids, J. Biosci. Bioeng.,
89 (2000) 40–46.
- W.J. Liu, K. Wang, B.Z. Li, H.L. Yuan, J.S. Yang, Production
and characterization of an intracellular bioflocculant by
Chryseobacterium daeguense W6 cultured in low nutrition
medium, Bioresour. Technol., 101 (2010) 1044–1048.
- N. He, Y. Li, J. Chen, S.Y. Lun, Identification of a novel
bioflocculant from a newly isolated Corynebacterium glutamicum,
Biochem. Eng. J., 11 (2002) 137–148.
- N. He, Y. Li, J. Chen, Production of a novel polygalacturonic
acid bioflocculant REA-11 by Corynebacterium glutamicum,
Bioresour. Technol., 94 (2004) 99–105.
- S.G. Wang, W.X. Gong, X.W. Liu, L. Tian, Q.Y. Yue, B.Y. Gao,
Production of a novel bioflocculant by culture of Klebsiella
mobilis using dairy wastewater, Biochem. Eng. J., 36 (2007)
81–86.
- Z.H. Yang, J. Huang, G.M. Zeng, M. Ruan, C.S. Zhou, L. Li,
Z.G. Rong, Optimization of flocculation conditions for kaolin
suspension using the composite flocculant of MBFGA1 and
PAC by response surface methodology, Bioresour. Technol.,
99 (2009) 4233–4239.
- X.W. Bo, B.Y. Gao, N.N. Peng, Y. Wang, Q.Y. Yue, Y.C. Zhao,
Coagulation performance and floc properties of compound
bioflocculant-aluminum sulfate dual-coagulant in treating
kaolin-humic acid solution, Chem. Eng. J., 173 (2011)
400–406.
- L.L. Wang, F. Ma, Y.Y. Qu, D.Z. Sun, A. Li, J.B. Guo, B. Yu,
Characterization of a compound bioflocculant produced by
mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6, World J. Microbiol. Biotechnol., 27 (2011) 2559–2565.
- L.X. Li, Y.J. Piao, F. Ma, T. Sheng, C.Y. Sun, W.M. Liu, Preparation
of a novel inorganic-biological composite flocculant for the
removal of turbidity and organic matter in the surface water,
Desal. Water Treat., 180 (2020) 219–226.
- J. Zhang, F. Chang, Y.J. Ren, Q.Y. Shi, An important improvement
in Ferron-timed spectrophotometry, Appl. Spectrosc., 67 (2013)
985–992.
- Y. Chen, M. Zhang, L. Xie, Z. Wang, Q. Zhou, Molecularweight-
fractionation characteristics and coagulation behaviors
of biorecalcitrant dissolved organic matter and colorants in
cassava distillery wastewater, Ind. Eng. Chem. Res., 57 (2018)
4442–4451.
- Y.X. Zhao, B.Y. Gao, H.K. Shon, B.C. Cao, J.H. Kim, Coagulation
characteristics of titanium (Ti) salt coagulant compared with
aluminum (Al) and iron (Fe) salts, J. Hazard. Mater., 185 (2011)
1536–1542.
- X. Huang, B.Y. Gao, Q.Y. Yue, Y. Wang, Q. Li, S. Zhao, S.L. Sun,
Effect of dosing sequence and raw water pH on coagulation
performance and flocs properties using dual-coagulation of
polyaluminum chloride and compound bioflocculant in low
temperature surface water treatment, Chem. Eng. J., 229 (2013)
477–483.
- Y.X. Zhao, B.Y. Gao, H.K. Shon, Y. Wang, J.H. Kim, Q.Y. Yue,
X.W. Bo, Anionic polymer compound bioflocculant as a
coagulant aid with aluminum sulfate and titanium tetrachloride,
Bioresour. Technol., 108 (2012) 45–54.
- S. Zhao, B.Y. Gao, X.Z. Li, M. Dong, Influence of using Enteromorpha extract as a coagulant aid on coagulation behavior
and floc characteristics of traditional coagulant in Yellow River
water treatment, Chem. Eng. J., 200 (2012) 569–576.
- Y.Y. Hu, C.Q. Tu, H.H. Wu, Species distribution of polymeric
aluminium ferrum timed complexation colorimetric analysis
method of Al-Fe-Ferron, J. Environ. Sci., 13 (2001) 418–418.
- I. Krupinska, Removal of natural organic matter from
groundwater by coagulation using prehydrolysed and nonprehydrolysed
coagulants, Desal. Water Treat., 132 (2018)
244–252.
- H.Z. Zhao, C. Liu, Y. Xu, J.R. Ni, High-concentration
polyaluminum chloride: preparation and effects of the Al
concentration on the distribution and transformation of Al
species, Chem. Eng. J., 155 (2009) 528–533.
- B.C. Cao, B.Y. Gao, M.W. Wang, X.M. Sun, J. Wang, Floc
properties of polyaluminum ferric chloride in water treatment:
the effect of Al/Fe molar ratio and basicity, J. Colloid Interface
Sci., 458 (2015) 247–254.
- M.Q. Yan, D.S. Wang, J.H. Qu, W.J. He, C.W.K. Chow, Relative
importance of hydrolyzed Al(III) species (Ala, Alb, and Alc)
during coagulation with polyaluminum chloride: a case study
with the typical micro-polluted source waters, J. Colloid
Interface Sci., 316 (2007) 482–489.
- S.X. Duan, H. Hu, F. Xiao, D.S. Wang, C.Q. Ye, R.Y. Jiao, Y.J.
Liu, Effects of Al species on coagulation efficiency, residual Al
and floc properties in surface water treatment, Colloids Surf., A,
459 (2014) 14–21.
- B.Y. Gao, B. Liu, T. Chen, Q.Y. Yue, Effect of aging period on
the characteristics and coagulation behavior of polyferric
chloride and polyferric chloride-polyamine composite coagulant
for synthetic dying wastewater treatment, J. Hazard. Mater.,
187 (2011) 413–420.
- X. Huang, X.W. Bo, Y.X. Zhao, B.Y. Gao, Y. Wang, S.L. Sun,
Y.Q. Yue, Q. Li, Effects of compound bioflocculant on coagulation
performance and floc properties for dye removal, Bioresour.
Technol., 165 (2014) 116–121.
- J.C. Wei, B.Y. Gao, Q.Y. Yue, Y. Wang, Strength and re-growth
properties of polyferric-polymer dual-coagulant flocs in surface
water treatment, J. Hazard. Mater., 175 (2010) 949–954.
- X. Huang, S.L. Sun, B.Y. Gao, Q.Y. Yue, Y. Wang, Q. Li,
Coagulation behavior and floc properties of compound
bioflocculant polyaluminum chloride dual-coagulants and
polymeric aluminum in low temperature surface water
treatment, J. Environ. Sci., 30 (2015) 215–222.
- C.Z. Sun, Q.Y. Yue, B.Y. Gao, B.C. Cao, R.M. Mu, Z.B. Zhang,
Synthesis and floc properties of polymeric ferric aluminum
chloride-polydimethyl diallylammonium chloride coagulant in
coagulating humic acid-kaolin synthetic water, Chem. Eng. J.,
185 (2012) 29–34.
- W.Z. Yu, J. Gregory, L. Campos, G. Li, The role of mixing
conditions on floc growth, breakage and re-growth, Chem. Eng.
J., 171 (2011) 425–430.
- C.L. Pang, A. Li, D. Cui, J.X. Yang, F. Ma, H.J. Guo, Complete
genome sequence of Klebsiella pneumoniae J1, a protein-based
microbial flocculant-producing bacterium, J. Biotechnol., 220
(2016) 90–91.
- C.Z. Sun, J.W. Qiu, Z.B. Zhang, T.F. Marhaba, Y.H. Zhang,
Coagulation behavior and floc characteristics of a novel
composite poly-ferric aluminum chloride-polydimethyl
diallylammonium chloride coagulant with different OH–(Fe3++Al3+) molar ratios, Water Sci. Technol., 74 (2016) 1636–1643.
- H.Y. Rong, B.Y. Gao, M. Dong, Y.X. Zhao, S.L. Sun, Y. Wang,
Q.Y. Yue, Q. Li, Characterization of size, strength and structure
of aluminum-polymer dual-coagulant flocs under different
pH and hydraulic conditions, J. Hazard. Mater., 252 (2013)
330–337.
- E.L. Sharp, P. Jarvis, S.A. Parsons, B. Jefferson, The impact of
zeta potential on the physical properties of ferric-NOM flocs,
Environ. Sci. Technol., 40 (2006) 3934–3940.
- Z.Q. Zhang, S.Q. Xia, J.A. Zhang, Enhanced dewatering of waste
sludge with microbial flocculant TJ-F1 as a novel conditioner,
Water Res., 44 (2010) 3087–3092.
- E.A. López-Maldonado, M.T. Oropeza-Guzman, J.L. Jurado-Baizaval, A. Ochoa-Terán, Coagulation–flocculation mechanisms
in wastewater treatment plants through zeta potential
measurements, J. Hazard. Mater., 279 (2014) 1–10.
- P. Yang, D.D. Li, W.J. Zhang, N. Wang, Z.Y. Yang, D.S. Wang,
T. Ma, Flocculation-dewatering behavior of waste activated
sludge particles under chemical conditioning with inorganic
polymer flocculant: effects of typical sludge properties,
Chemosphere, 218 (2019) 930–940.
- Y.M. Li, Q. Li, D.K. Hao, Z.H. Hu, D.X. Song, M. Yang,
Characterization and flocculation mechanism of an alkaliactivated
polysaccharide flocculant from Arthrobacter sp. B4,
Bioresour. Technol., 170 (2014) 574–577.
- Z.C. Zhang, The flocculation mechanism and treatment of
oily wastewater by flocculation, Water Sci. Technol., 76 (2017)
2630–2637.
- C.F. Zhao, S. Shao, Y.Y. Zhou, Y.H. Yang, Y. Shao, L.P. Zhang,
Y.K. Zhou, L.N. Xie, L. Luo, Optimization of flocculation
conditions for soluble cadmium removal using the composite
flocculant of green anion polyacrylamide and PAC by response
surface methodology, Sci. Total Environ., 645 (2018) 267–276.