References

  1. Z. Pan, C. Song, L. Li, H. Wang, Y. Pan, Y. Wang, X. Feng, Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: recent advances and future prospects, Chem. Eng. J., 376 (2019) 120909, doi: 10.1016/j.cej.2019.01.188.
  2. M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed. Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J., 157 (2010) 373–378.
  3. E.D.S. Nascimento, A. Tenuta Filho, Chemical waste risk reduction and environmental impact generated by laboratory activities in research and teaching institutions, Braz. J. Pharm. Sci., 46 (2010) 187–198.
  4. D. Zhang, F. Zeng, Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye, J. Mater. Sci., 47 (2012) 2155–2161.
  5. N.B. Swan, M.A.A. Zaini, Adsorption of malachite green and congo red dyes from water: recent progress and future outlook, Ecol. Chem. Eng. S, 26 (2019) 119–132.
  6. F.J. Lozano, R. Lozano, P. Freire, C.J. Gonzalez, T. Sakao, M.G. Ortiz, A. Trianni, A. Carpenter, T. Viveros, New perspectives for green and sustainable chemistry and engineering: approaches from sustainable resource and energy use, management, and transformation, J. Cleaner Prod., 172 (2018) 227–232.
  7. R. Monsef, M.G. Arani, M.S. Niasari, Design of magnetically recyclable ternary Fe2O3/EuVO4/g‑C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage, ACS Appl. Energy Mater., 4 (2021) 680–695.
  8. S.Z. Ajabshir, M.S. Morassaei, M.S. Niasari, Eco-friendly synthesis of Nd2Sn2O7 – based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine, Composites, Part B, 167 (2019) 643–653.
  9. S.A.F. Fini, M.S. Niasari, D. Ghanbari, Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria, Spectrochim. Acta, Part A, 203 (2018) 481–493.
  10. M.S. Niasari, F. Davar, M.R.L. Estarki, Long chain polymer assisted synthesis of flower-like cadmium sulfide nanorods via hydrothermal process, J. Alloys Compd., 481 (2009) 776–780.
  11. S.M.H. Mashkani, F. Mohandes, M.S. Niasari, K.V. Rao, Microwave-assisted synthesis and photovoltaic measurements of CuInS2 nanoparticles prepared by using metal-organic precursors, Mater. Res. Bull., 47 (2012) 3148–3159.
  12. M.S. Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper (II) complexes, Chem. Lett., 34 (2005) 244–245.
  13. M.S. Niasari, Nanoscale microreactor-encapsulation 14-membered nickel (II) hexamethyl tetraaza: synthesis, characterization and catalytic activity, J. Mol. Catal. A: Chem., 229 (2005) 159–164.
  14. R. Monsef, M.G. Arani, O. Amiri, M.S. Niasari, Sonochemical synthesis, characterization and application of PrVO4 nano-structures as an effective photocatalyst for discoloration of organic dye contaminants in wastewater, Ultrason. Sonochem., 61 (2020) 104822, doi: 10.1016/j.ultsonch.2019.104822.
  15. M.S. Niasari, N. Mir, F. Davar, Synthesis and characterization of NiO nanoclusters via thermal decomposition, Polyhedron, 28 (2009) 1111–1114.
  16. M.S. Niasari, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor, J. Alloys Compd., 494 (2010) 410–414.
  17. M. Ghanbari, M.S. Niasari, Tl4CdI6 nanostructures: facile sonochemical synthesis and photocatalytic activity for removal of organic dyes, Inorg. Chem., 57 (2018) 11443–11455.
  18. S. Waclawek, V.V.T. Padil, M. Černík, Major advances and challenges in heterogeneous catalysis for environmental applications: a review, Ecol. Chem. Eng. S, 25 (2018) 9–34.
  19. U.I. Gaya, A.H. Abdullah, M.Z. Hussein, Z. Zainal, Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder, Desalination, 263 (2010) 176–182.
  20. M.M. Arimi, Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent, Prog. Nat. Sci.: Mater. Int., 27 (2017) 275–282.
  21. I.C. M’bra, P. García-Muñoz, P. Drogui, N. Keller, A. Trokourey, D. Robert, Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams, J. Photochem. Photobiol., A, 368 (2019) 1–6.
  22. M. Afsharnia, M. Kianmehr, H. Biglari, A. Dargahi, A. Karimi, Disinfection of dairy wastewater effluent through solar photocatalysis processes, Water Sci. Eng., 11 (2018) 214–219.
  23. F. Riboni, M.V. Dozzi, M.C. Paganini, E. Giamello, E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation, Catal. Today, 287 (2017) 176–181.
  24. E. Mena, A. Rey, F.J. Beltrán, TiO2 photocatalytic oxidation of a mixture of emerging contaminants: a kinetic study independent of radiation absorption based on the direct-indirect model, Chem. Eng. J., 339 (2018) 369–380.
  25. S. Ghosh, Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications, 1st ed., Wiley- VCH, Germany, 2018.
  26. S. Waclawek, Do we still need a laboratory to study advanced oxidation processes? a review of the modelling of radical reactions used for water treatment, Ecol. Chem. Eng. S, 28 (2021) 11–28.
  27. R. Baker, Membrane Technology and Applications, 2nd ed., John Wiley & Sons Inc., California, 2004.
  28. M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Springer, Netherlands, 1996.
  29. C.H. Loh, B. Wu, L. Ge, C. Pan, R.Wang, High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: a feasibility study, Chemosphere, 194 (2018) 534–542.
  30. M. Razali, J.F. Kim, M. Attfield, P.M. Budd, E. Drioli, Y.M. Lee, G. Szekely, Sustainable wastewater treatment and recycling in membrane manufacturing, Green Chem., 17 (2015) 5196–5205.
  31. R.B. Baird, Standard Methods for the Examination of Water and Wastewater, 23rd ed., Water Environment Federation, American Public Health Association, 2017.
  32. C.A.P. Lima, B.A. Araujo, K.S. Silva, C.B. Silva, G.G.C. Lima, F.F. Vieira, K.M. Medeiros, Advanced oxidative process by heterogeneous photocatalysis for chemical laboratories effluents treatment, Desal. Water Treat., 174 (2020) 248–257.
  33. K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2:
    a review, Appl. Water Sci., 7 (2017) 1569–1578.
  34. S. Papoutsakis, S. Miralles-Cuevas, N. Gondrexon, S. Baup, S. Malato, C. Pulgarin, Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach, Ultrason. Sonochem., 22 (2015) 527–534.
  35. A. Peter, A. Mihaly-Cozmuta, C. Nicula, L. Mihaly-Cozmuta, A. Jastrzębska, A. Olszyna, L. Baia, UV light-assisted degradation of methyl orange, methylene blue, phenol, salicylic acid, and rhodamine B: photolysis versus photocatalyis, Water Air Soil Pollut., 228 (2017) 1–12.
  36. T. Soltani, M.H. Entezari, Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation, J. Mol. Catal. A: Chem., 377 (2013) 197–203.
  37. M. Sanchez, M.J. Rivero, I. Ortiz, Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis, Appl. Catal., B, 101 (2011) 515–521.
  38. F. Kazemi, Z. Mohamadnia, B. Kaboudin, Z. Karimi, Photodegradation of methylene blue with a titanium dioxide/polyacrylamide photocatalyst under sunlight, J. Appl. Polym. Sci., 133 (2016) 43386, doi:10.1002/app.43386.
  39. T. Soltani, M.H. Entezari, Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation, J. Mol. Catal. A: Chem., 377 (2013) 197–203.
  40. R. Ameta, S.C. Ameta, Photocatalysis: Principles and Applications, 1st ed., CRC Press Taylor & Francis Group, Boca Raton, 2017.
  41. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M.H. Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015) 1–36.
  42. A. Matioli, J. Miagava, D. Gouvêa, Modification of the stability of nanometric TiO2 polymorphs by excess SnO2 surface, Ceramics, 58 (2012) 53–57.
  43. J. Dostanic, B. Grbic, N. Radic, S. Stojadinovic, R. Vasilic, Z. Vukovic, Preparation and photocatalyic properties of TiO2-P25 film prepared by spray pyrolysis method, Appl. Surf. Sci., 274 (2013) 321–327.
  44. Z. Zarhri, M.A.A. Cardos, Y. Ziat, M. Hammi, O.E. Rhazouani, J.C.C. Argüello, D.A. Avellaneda, Synthesis, structural and crystal size effect on the optical properties of sprayed TiO2 thin films: experiment and
    DFT TB-mbj, J. Alloys Compd., 819 (2020) 153010, doi: 10.1016/j.jallcom.2019.153010
  45. Y. Zhang, Z.Z. Fang, P. Sun, Z. Huang, S. Zheng, A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis, Powder Technol., 393 (2021) 650–658.
  46. J. Dostanić, B. Grbić, N. Radić, S. Stojadinović, R. Vasilić, Z. Vuković, Preparation and photocatalyic properties of TiO2-P25 film prepared by spray pyrolysis method, Appl. Surf. Sci., 274 (2013) 321–327.
  47. S. Sohrabnezhad, Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst, Spectrochim. Acta, Part A, 81 (2011) 228–235.
  48. E.L. Castellanos-Leal, P. Acevedo-Peña, V.R. Güiza-Argüello, E.M. Córdoba-Tuta, N and F co-doped TiO2 thin films on stainless steel for photoelectrocatalytic removal of cyanide ions in aqueous solutions, Mater. Res., 20 (2017) 487–495.
  49. B. Choudhury, A. Choudhury, Luminescence characteristics of cobalt doped TiO2 nanoparticles, J. Lumin., 132 (2012) 178–184.
  50. L.G. Devi, B.N. Murhty, S.G. Kumar, Photocatalytic degradation of imidachloprid under solar light using metal ion doped TiO2 nanoparticles: influence of oxidation state and electronic configuration of dopants, Catal. Lett., 130 (2009) 496–503.
  51. P. Ngaotrakanwiwat, P. Heawphet, P. Rangsunvigit, Enhancement of photoelectrochemical cathodic protection of copper in marine condition by Cu-doped TiO2, Catalysts, 10 (2020) 146–155.
  52. X. Yang, Y. Wang, L. Zhang, H. Fu, P. He, D. Han, T. Lawson, X. An, The use of tunable optical absorption plasmonic Au and Ag decorated TiO2 structures as efficient visible light photocatalysts, Catalysts, 10 (2020) 139–153.
  53. S. Joseph, B. Mathew, Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of alpinia galanga and evaluation of their catalytic and antimicrobial activities, J. Nanopart., 2014 (2014) 1–9.
  54. K. Dai, H. Chen, T. Peng, D. Ke, H. Yi, Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles, Chemosphere, 69 (2007) 1361–1367.
  55. C. Marinescu, A. Sofronia, C. Rusti, R. Piticescu, V. Badilita, E. Vasile, R. Baies, S. Tanasescu, DSC investigation of nanocrystalline TiO2 powder, J. Therm. Anal. Calorim., 103 (2011) 49–57.
  56. S.D. Delekar, H.M. Yadav, S.N. Achary, S.S. Meena, S.H. Pawar, Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles, Appl. Surf. Sci., 263 (2012) 536–545.
  57. J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F–doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater., 14 (2002) 3808–3816.
  58. V.G. Gandhi, M.K Mishra, M.S. Rao, A. Kumar, P.A. Joshi, D.O. Shah, Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium, J. Ind. Eng. Chem., 17 (2011) 331–339.
  59. S.J. Darzi, A.R. Mahjoub, A. Nilchi, Synthesis of spongelike mesoporous anatase and its photocatalytic properties, J. Chem. Chem. Eng., 29 (2010) 37–42.
  60. J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis, Chem. Commun., 50 (2014) 13971–13974.
  61. C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, H. Tamiaki, Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film, Thin Solid Films, 516 (2008) 5881–5884.
  62. R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles, Optik, 127 (2016) 7143–7154.
  63. A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film, J. Taibah Univ. Sci., 10 (2016) 352–362.
  64. C.M. Marrodan, F. Liguori, P. Barbaro, Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone, Mol. Catal., 466 (2019) 60–69.
  65. N. Mandzy, E. Grulke, T. Druffel, Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions, Powder Technol., 160 (2005) 121–126.
  66. Z. He, Z. Zhu, J. Li, J. Zhou, N. Wei, Characterization and activity of mesoporous titanium dioxide beads with high surface areas and controllable pore sizes, J. Hazard. Mater., 190 (2011) 133–139.
  67. J.P.S. Valente, P.M. Padilha, A.O. Florentino, Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2, Chemosphere, 64 (2006) 1128–1133.
  68. A. Zolfaghari, H.R. Mortaheb, F. Meshkini, Removal of N-methyl-2-pyrrolidone by photocatalytic degradation in a batch reactor, Ind. Eng. Chem. Res., 50 (2011) 9569–9576.
  69. S.D.A. Pascoal, C.B. Silva, K.S. Silva, G.G.C. Lima, K.M. Medeiros, C.A.P. Lima, Treatment by TiO2/UV of wastewater generated in polymeric membranes production, Desal. Water Treat., 207 (2020) 30–42.
  70. K.J. Parton, B.J. Godley, D. Santillo, M. Tausif, L.C.M. Omeyer, T.S. Galloway, Investigating the presence of microplastics in demersal sharks of the North-East Atlantic, Sci. Rep., 10 (2020) 1–11.
  71. X. Wang, L. Cao, D. Chen, R.A. Caruso, Engineering of monodisperse mesoporous titania beads for photocatalytic applications, ACS Appl. Mater. Interfaces, 5 (2013) 9421–9428.