References

  1. T. Tazkiaturrizki, R. Ratnaningsih, S. Aphirta, Design evaluation of biological unit as a basic consideration to determine the design criteria of domestic wastewater treatment plant at 1st Zone, Jakarta, IOP Conf. Ser.: Mater. Sci. Eng., 434 (2018) 12238, doi: 10.1088/1757-899x/434/1/012238.
  2. R. Permatasari, A. Rinanti, R. Ratnaningsih, Treating domestic effluent wastewater treatment by aerobic biofilter with bioballs medium, IOP Conf. Ser.: Earth Environ. Sci, 106 (2018) 12048,
    doi: 10.1088/1755-1315/106/1/012048.
  3. J. Oladejo, K. Shi, X. Luo, G. Yang, T. Wu, A review of sludge-toenergy recovery methods, Energies, 12 (2019) 60, doi: 10.3390/en12010060.
  4. S. Abd, A. Rafie, N. Haider, Assessing the Energy Values of Sewage Sludge from Pagla Sewage Treatment Plant, BUETANWAR ISPAT 1st Bangladesh Civil Engineering SUMMIT 2016, BUET, Dhaka, Bangladesh, March 2018, 2016.
  5. H.B. Gotass, Sanitary Disposal and Reclamation of Organic Wastes, Compost. Sanit. Dispos. Reclam. Org. Wastes, Vol. WORLD HEAL, No. 31, 1956, pp. 1–250. Available at:
    https:// apps.who.int/iris/bitstream/handle/10665/41665/WHO_ MONO_31.pdf;jsessionid=223C5D84C314C992CA6AA3B B395A6F36?sequence=1
  6. I. Windiarti, Studi Penurunan Konsentrasi Cu dengan Memanfaatkan Lumpur dari IPAL PT SIER, Surabaya: Jurusan Teknik Lingkungan FTSP–ITS, 1997.
  7. S.E. Bimantara, E.N. Hidayah, Pemanfaatan Limbah Lumpur Ipal Kawasan Industri Dan Serbuk Gergaji Kayu Menjadi Briket, Jukung (Jurnal Tek. Lingkungan), 5 (2019) 21–27, doi: 10.20527/jukung.v5i1.6192.
  8. K. Salonen, J. Sarvala, I. Hakala, M.‐L Viljanen, The relation of energy and organic carbon in aquatic invertebrates, Limnol. Oceanogr., 21 (1976) 724–730.
  9. M.S. Abfertiawan, Studi Kondisi Eksisting Sistem Pengelolaan Air Limbah Domestik Setempat di Kota Denpasar, J. Ilmu Lingkung., 17 (2019) 443, doi: 10.14710/jil.17.3.443–451.
  10. L. Serwecińska, E. Kiedrzyńska, M. Kiedrzyński, A catchmentscale assessment of the sanitary condition of treated wastewater and river water based on fecal indicators and carbapenemresistant Acinetobacter spp., Sci. Total Environ., 750 (2021) 142266, doi: 10.1016/j.scitotenv.2020.142266.
  11. H.A. Hermadi, S.H. Warsito, Pengentasan Surabaya Bebas Odf Dengan Memberikan Percontohan Wc Anti Bau Dan Anti Penuh Di Kelurahan Jagir Wonokromo, J. Layanan Masy. (Journal Public Serv.), 4 (2020) 53, doi:10.20473/jlm.v4i1.2020.53-61.
  12. Badan Pusat Statistik (BPS), Proyeksi Penduduk Laki-laki dan Perempuan Provinsi DKI Jakarta Menurut Kelompok Umur 2010–2035, Proyeksi Penduduk Laki-laki dan Perempuan Provinsi DKI Jakarta Menurut Kelompok Umur 2010–2035, 2010. Available at: https://jakarta.bps.go.id/ dynamictable/2019/03/05/47/proyeksi-penduduk-laki-lakidan- perempuan-provinsi-dki-jakarta-menurut-kelompokumur-2010–2035.html (accessed May 10, 2021)
  13. Pemerintah Provinsi DKI Jakarta, Desain Besar Penyediaan Air Minum dan Limbah Domestik Jakarta 2018–2022, DKI Jakarta: Bidang Tata Ruang dan Lingkungan Hidup Pemerintah Provinsi DKI Jakarta, 2018.
  14. O. Cofie, J. Nikiema, R. Impraim, N. Adamtey, J. Paul, D. Koné, Co-Composting of Solid Waste and Fecal Sludge for Nutrient and Organic Matter Recovery (Vol. 3), International Water Management Institute (IWMI), Colombo, 2016.
  15. M. Odagiri, Z. Muhammad, A.A. Cronin, M.E. Gnilo, A.K. Mardikanto, K. Umam, Y.T. Asamou, Enabling factors for sustaining open defecation-free communities in rural Indonesia: a cross-sectional study, Int. J. Environ. Res. Public Health, 14 (2017), doi: 10.3390/ijerph14121572.
  16. P.S. Nugroho, H. Wiarisa, M. Wulandari, Education level and knowledge level in open defecation behavior, J. Res. Public Health Sci., 1 (2019) 109–112.
  17. G.I. Mazaya, H. Noya, E.S. Soedjono, Study on Open Defecation Free in Kelurahan Klayan Tengah Banjarmasin City, International Conference on Science, Technology and Humanity, 2015, pp. 81–87. Available at: http://ppjp.unlam. ac.id/journal/index.php
  18. G. Nakhla, V. Liu, A. Bassi, Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater, Bioresour. Technol., 97 (2006) 131–139.
  19. I Wayan Koko Suryawan, I.Y. Septiariva, Q. Helmy, S. Notodarmojo, M. Wulandari, N.K. Sari, A. Sarwono, R. Pratiwi, J.-W. Lim, Comparison of ozone pre-treatment and post-treatment hybrid with moving bed biofilm reactor in removal of Remazol Black 5, Int. J. Technol., 12 (2021) 728–738.
  20. N. Anggraini, H. Herdiansyah, COD values for determining BOD5 dilution factor in faecal sludge waste – case study on the duri kosambi faecal sludge treatment plant in DKI Jakarta province, AIP Conf. Proc., 2120 (2019) 40038, doi: 10.1063/1.5115676.
  21. T.H. Debela, A. Beyene, E. Tesfahun, A. Getaneh, A. Gize, Z. Mekonnen, Fecal contamination of soil and water in sub- Saharan Africa cities: the case of Addis Ababa, Ethiopia, Ecohydrol. Hydrobiol., 18 (2018) 225–230, doi:10.1016/j. ecohyd.2017.10.003.
  22. A. Sarwono, I.Y. Septiariva, F.D. Qonitan, N.L. Zahra, N.K. Sari, E.N. Fauziah, K.K. Ummatin, Q. Amoa, N. Faria,
    L.J. Wei, I.W.K. Suryawan, Municipal Solid Waste Treatment for Energy Recovery Through Thermal Waste-To-Energy in Depok City, Indonesia, J. Adv. Res. Fluid Mech. Therm. Sci., 85 (2021).
  23. A.P. Rosa, C.A.L. Chernicharo, L.C.S. Lobato, R.V. Silva, R.F. Padilha, J.M. Borges, Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant, Renewable Energy, 124 (2018) 21–26, doi: 10.1016/j.renene.2017.09.025.
  24. C. Karaca, S. Sözen, D. Orhon, H. Okutan, High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery, Waste Manage., 78 (2018) 217–226, doi: 10.1016/j. wasman.2018.05.034.
  25. V. Singh, H.C. Phuleria, M.K. Chandel, Estimation of energy recovery potential of sewage sludge in India: waste to watt approach, J. Cleaner Prod., 276 (2020) 122538, doi: 10.1016/j. jclepro.2020.122538.
  26. R. Hakiki, T. Wikaningrum, T. Kurniawan, Energy Prospects of Hazardous Sludge from Wastewater Treatment Facilities, IntechOpen, Ed. Renewable Resources and Biorefineries, 2018.
  27. I. Ahmed, D. Ofori-Amanfo, E. Awuah, F. Cobbold, A comprehensive study on the physicochemical characteristics of faecal sludge in greater accra region and analysis of its potential use as feedstock for green energy, J. Renewable Energy, 2019 (2019) 8696058, doi: 10.1155/2019/8696058.
  28. S. Yoh, T. Sitepu, H. Ambarita, Proximate, ultimate and calorific value analyses of paper industry sludge at different moisture content, IOP Conf. Ser.: Mater. Sci. Eng., 851 (2020) 12052,
    doi:10.1088/1757-899x/851/1/012052.
  29. A.K.R. Suryakumar, L.J. Pavithra, Faecal Sludge Treatment and Circular Economy: A Case Study Analysis, Waste Mana., Springer, Singapore, 2020.
  30. H. Li, C. Jin, Z. Zhang, I. O’Hara, S. Mundree, Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways, Energy, 126 (2017) 649–657, doi: 10.1016/j.energy.2017.03.068.